Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Stem Cells ; 40(2): 190-203, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35293574

RESUMEN

Fluorescent reporter lines generated in human pluripotent stem cells are a highly useful tool to track, isolate, and analyze cell types and lineages in live cultures. Here, we generate the first human cone photoreceptor reporter cell line by CRISPR/Cas9 genome editing of a human embryonic stem cell (hESC) line to tag both alleles of the Guanine nucleotide-binding protein subunit gamma-T2 (GNGT2) gene with a mCherry reporter cassette. Three-dimensional optic vesicle-like structures were produced to verify reporter fidelity and track cones throughout their development in culture. The GNGT2-T2A-mCherry hESC line faithfully and robustly labels GNGT2-expressing cones throughout the entirety of their differentiation in vitro, recapitulating normal fetal expression of this gene. Our observations indicate that human cones undergo significant migratory activity during the course of differentiation in vitro. Consistent with this, our analysis of human fetal retinae from different stages of development finds positional differences of the cone population depending on their state of maturation. This novel reporter line will provide a useful tool for investigating human cone development and disease.


Asunto(s)
Células Madre Pluripotentes , Células Fotorreceptoras Retinianas Conos , Diferenciación Celular/genética , Línea Celular , Genes Reporteros , Humanos , Retina/metabolismo
2.
Hum Genet ; 140(4): 593-607, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33095315

RESUMEN

Ciliopathies are a broad range of inherited developmental and degenerative diseases associated with structural or functional defects in motile or primary non-motile cilia. There are around 200 known ciliopathy disease genes and whilst genetic testing can provide an accurate diagnosis, 24-60% of ciliopathy patients who undergo genetic testing do not receive a genetic diagnosis. This is partly because following current guidelines from the American College of Medical Genetics and the Association for Molecular Pathology, it is difficult to provide a confident clinical diagnosis of disease caused by missense or non-coding variants, which account for more than one-third of cases of disease. Mutations in PRPF31 are the second most common cause of the degenerative retinal ciliopathy autosomal dominant retinitis pigmentosa. Here, we present a high-throughput high-content imaging assay providing quantitative measure of effect of missense variants in PRPF31 which meets the recently published criteria for a baseline standard in vitro test for clinical variant interpretation. This assay utilizes a new PRPF31+/- human retinal cell line generated using CRISPR gene editing to provide a stable cell line with significantly fewer cilia in which novel missense variants are expressed and characterised. We show that high-content imaging of cells expressing missense variants in a ciliopathy gene on a null background can allow characterisation of variants according to the cilia phenotype. We hope that this will be a useful tool for clinical characterisation of PRPF31 variants of uncertain significance, and can be extended to variant classification in other ciliopathies.


Asunto(s)
Sistemas CRISPR-Cas , Ciliopatías/diagnóstico por imagen , Ciliopatías/genética , Diagnóstico por Imagen/métodos , Proteínas del Ojo/genética , Línea Celular , Células Cultivadas , Edición Génica , Técnicas de Inactivación de Genes , Guías como Asunto , Procesamiento de Imagen Asistido por Computador , Mutación Missense , Retina/diagnóstico por imagen , Degeneración Retiniana/diagnóstico por imagen , Degeneración Retiniana/genética , Retinitis Pigmentosa/diagnóstico por imagen , Retinitis Pigmentosa/genética
3.
BMC Bioinformatics ; 15: 288, 2014 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25158845

RESUMEN

BACKGROUND: Transcriptional regulation is normally based on the recognition by a transcription factor of a defined base sequence in a process of direct read-out. However, the nucleic acid secondary and tertiary structure can also act as a recognition site for the transcription factor in a process known as indirect read-out, although this is much less understood. We have previously identified such a transcriptional control mechanism in early Xenopus development where the interaction of the transcription factor ilf3 and the gata2 promoter requires the presence of both an unusual A-form DNA structure and a CCAAT sequence. Rapid identification of such promoters elsewhere in the Xenopus and other genomes would provide insight into a less studied area of gene regulation, although currently there are few tools to analyse genomes in such ways. RESULTS: In this paper we report the implementation of a novel bioinformatics approach that has identified 86 such putative promoters in the Xenopus genome. We have shown that five of these sites are A-form in solution, bind to transcription factors and fully validated one of these newly identified promoters as interacting with the ilf3 containing complex CBTF. This interaction regulates the transcription of a previously uncharacterised downstream gene that is active in early development. CONCLUSIONS: A Perl program (APTE) has located a number of potential A-form DNA promotor elements in the Xenopus genome, five of these putative targets have been experimentally validated as A-form and as targets for specific DNA binding proteins; one has also been shown to interact with the A-form binding transcription factor ilf3. APTE is available from http://www.port.ac.uk/research/cmd/software/ under the terms of the GNU General Public License.


Asunto(s)
ADN de Forma A/genética , Genoma/genética , Genómica/métodos , Regiones Promotoras Genéticas/genética , Programas Informáticos , Animales , Secuencia de Bases , ADN de Forma A/metabolismo , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Regulación de la Expresión Génica , Proteínas del Factor Nuclear 90/metabolismo , Xenopus/genética , Xenopus/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
4.
Methods Mol Biol ; 2633: 97-109, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36853460

RESUMEN

Transgenic approaches using I-SceI are powerful genome modification methods for creating heritable modifications in eukaryotic genomes. Such modifications are ideal for studying putative promoters and their temporal and spatial expression patterns in real time, in vivo. Central to this process is the initial engineering of a plasmid construct containing multiple DNA modules in a specific order prior to the integration into the target genome. One popular way of doing this is based upon the pGateway system, the modular form of which described in this chapter is known as pTransgenesis. We will initially describe the protocol of obtaining the plasmid construct containing the required sequence modules, and then the process of integrating the construct into the genome of a Xenopus embryo via co-injection with I-SceI and subsequent screening for transgenics.


Asunto(s)
Embrión de Mamíferos , Eucariontes , Animales , Xenopus laevis/genética , Animales Modificados Genéticamente/genética , Técnicas de Transferencia de Gen
5.
Front Genet ; 13: 1009430, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36176300

RESUMEN

Retinitis pigmentosa (RP) is the most common cause of hereditary blindness, and may occur in isolation as a non-syndromic condition or alongside other features in a syndromic presentation. Biallelic or monoallelic mutations in one of eight genes encoding pre-mRNA splicing factors are associated with non-syndromic RP. The molecular mechanism of disease remains incompletely understood, limiting opportunities for targeted treatment. Here we use CRISPR and base edited PRPF6 and PRPF31 mutant cell lines, and publicly-available data from human PRPF31 +/- patient derived retinal organoids and PRPF31 siRNA-treated organotypic retinal cultures to confirm an enrichment of differential splicing of microtubule, centrosomal, cilium and DNA damage response pathway genes in these cells. We show that genes with microtubule/centrosome/centriole/cilium gene ontology terms are enriched for weak 3' and 5' splice sites, and that subtle defects in spliceosome activity predominantly affect efficiency of splicing of these exons. We suggest that the primary defect in PRPF6 or PRPF31 mutant cells is microtubule and centrosomal defects, leading to defects in cilium and mitotic spindle stability, with the latter leading to DNA damage, triggering differential splicing of DNA damage response genes to activate this pathway. Finally, we expand understanding of "splicing factor RP" by investigating the function of TTLL3, one of the most statistically differentially expressed genes in PRPF6 and PRPF31 mutant cells. We identify that TTLL3 is the only tubulin glycylase expressed in the human retina, essential for monoglycylation of microtubules of the cilium, including the retinal photoreceptor cilium, to prevent cilium degeneration and retinal degeneration. Our preliminary data suggest that rescue of tubulin glycylation through overexpression of TTLL3 is sufficient to rescue cilium number in PRPF6 and PRPF31 mutant cells, suggesting that this defect underlies the cellular defect and may represent a potential target for therapeutic intervention in this group of disorders.

6.
Genome Med ; 13(1): 34, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33632302

RESUMEN

BACKGROUND: Coat protein complex 1 (COPI) is integral in the sorting and retrograde trafficking of proteins and lipids from the Golgi apparatus to the endoplasmic reticulum (ER). In recent years, coat proteins have been implicated in human diseases known collectively as "coatopathies". METHODS: Whole exome or genome sequencing of two families with a neuro-developmental syndrome, variable microcephaly and cataracts revealed biallelic variants in COPB1, which encodes the beta-subunit of COPI (ß-COP). To investigate Family 1's splice donor site variant, we undertook patient blood RNA studies and CRISPR/Cas9 modelling of this variant in a homologous region of the Xenopus tropicalis genome. To investigate Family 2's missense variant, we studied cellular phenotypes of human retinal epithelium and embryonic kidney cell lines transfected with a COPB1 expression vector into which we had introduced Family 2's mutation. RESULTS: We present a new recessive coatopathy typified by severe developmental delay and cataracts and variable microcephaly. A homozygous splice donor site variant in Family 1 results in two aberrant transcripts, one of which causes skipping of exon 8 in COPB1 pre-mRNA, and a 36 amino acid in-frame deletion, resulting in the loss of a motif at a small interaction interface between ß-COP and ß'-COP. Xenopus tropicalis animals with a homologous mutation, introduced by CRISPR/Cas9 genome editing, recapitulate features of the human syndrome including microcephaly and cataracts. In vitro modelling of the COPB1 c.1651T>G p.Phe551Val variant in Family 2 identifies defective Golgi to ER recycling of this mutant ß-COP, with the mutant protein being retarded in the Golgi. CONCLUSIONS: This adds to the growing body of evidence that COPI subunits are essential in brain development and human health and underlines the utility of exome and genome sequencing coupled with Xenopus tropicalis CRISPR/Cas modelling for the identification and characterisation of novel rare disease genes.


Asunto(s)
Alelos , Catarata/genética , Proteína Coatómero/genética , Variación Genética , Discapacidad Intelectual/genética , Microcefalia/genética , Adolescente , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Niño , Proteína Coatómero/química , Familia , Femenino , Humanos , Masculino , Mutación Missense/genética , Linaje , Síndrome , Xenopus
7.
Nat Genet ; 53(2): 205-214, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33432184

RESUMEN

Angiotensin-converting enzyme 2 (ACE2) is the main entry point in airway epithelial cells for SARS-CoV-2. ACE2 binding to the SARS-CoV-2 protein spike triggers viral fusion with the cell plasma membrane, resulting in viral RNA genome delivery into the host. Despite ACE2's critical role in SARS-CoV-2 infection, full understanding of ACE2 expression, including in response to viral infection, remains unclear. ACE2 was thought to encode five transcripts and one protein of 805 amino acids. In the present study, we identify a novel short isoform of ACE2 expressed in the airway epithelium, the main site of SARS-CoV-2 infection. Short ACE2 is substantially upregulated in response to interferon stimulation and rhinovirus infection, but not SARS-CoV-2 infection. This short isoform lacks SARS-CoV-2 spike high-affinity binding sites and, altogether, our data are consistent with a model where short ACE2 is unlikely to directly contribute to host susceptibility to SARS-CoV-2 infection.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , COVID-19/genética , Células Epiteliales/metabolismo , Animales , Sitios de Unión , Células Cultivadas , Chlorocebus aethiops , Exones , Células HEK293 , Humanos , Interferones/inmunología , Unión Proteica , Isoformas de Proteínas/genética , Sitios de Empalme de ARN , RNA-Seq , Sistema Respiratorio/citología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Transcriptoma , Regulación hacia Arriba , Células Vero
8.
Nat Commun ; 11(1): 313, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31949143

RESUMEN

Langerhans cells (LC) can prime tolerogenic as well as immunogenic responses in skin, but the genomic states and transcription factors (TF) regulating these context-specific responses are unclear. Bulk and single-cell transcriptional profiling demonstrates that human migratory LCs are robustly programmed for MHC-I and MHC-II antigen presentation. Chromatin analysis reveals enrichment of ETS-IRF and AP1-IRF composite regulatory elements in antigen-presentation genes, coinciding with expression of the TFs, PU.1, IRF4 and BATF3 but not IRF8. Migration of LCs from the epidermis is accompanied by upregulation of IRF4, antigen processing components and co-stimulatory molecules. TNF stimulation augments LC cross-presentation while attenuating IRF4 expression. CRISPR-mediated editing reveals IRF4 to positively regulate the LC activation programme, but repress NF2EL2 and NF-kB pathway genes that promote responsiveness to oxidative stress and inflammatory cytokines. Thus, IRF4-dependent genomic programming of human migratory LCs appears to enable LC maturation while attenuating excessive inflammatory and immunogenic responses in the epidermis.


Asunto(s)
Genómica , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Células de Langerhans/metabolismo , Presentación de Antígeno/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Sistemas CRISPR-Cas , Movimiento Celular , Citocinas/metabolismo , Edición Génica , Perfilación de la Expresión Génica , Antígenos de Histocompatibilidad Clase I , Antígenos de Histocompatibilidad Clase II , Humanos , Células de Langerhans/inmunología , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Transcripción Genética , Activación Transcripcional , Regulación hacia Arriba
9.
Front Genet ; 10: 308, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31024622

RESUMEN

The retina contains several ciliated cell types, including the retinal pigment epithelium (RPE) and photoreceptor cells. The photoreceptor cilium is one of the most highly modified sensory cilia in the human body. The outer segment of the photoreceptor is a highly elaborate primary cilium, containing stacks or folds of membrane where the photopigment molecules are located. Perhaps unsurprisingly, defects in cilia often lead to retinal phenotypes, either as part of syndromic conditions involving other organs, or in isolation in the so-called retinal ciliopathies. The study of retinal ciliopathies has been limited by a lack of retinal cell lines. RPE1 retinal pigment epithelial cell line is commonly used in such studies, but the existence of a photoreceptor cell line has largely been neglected in the retinal ciliopathy field. 661W cone photoreceptor cells, derived from mouse, have been widely used as a model for studying macular degeneration, but not described as a model for studying retinal ciliopathies such as retinitis pigmentosa. Here, we characterize the 661W cell line as a model for studying retinal ciliopathies. We fully characterize the expression profile of these cells, using whole transcriptome RNA sequencing, and provide this data on Gene Expression Omnibus for the advantage of the scientific community. We show that these cells express the majority of markers of cone cell origin. Using immunostaining and confocal microscopy, alongside scanning electron microscopy, we show that these cells grow long primary cilia, reminiscent of photoreceptor outer segments, and localize many cilium proteins to the axoneme, membrane and transition zone. We show that siRNA knockdown of cilia genes Ift88 results in loss of cilia, and that this can be assayed by high-throughput screening. We present evidence that the 661W cell line is a useful cell model for studying retinal ciliopathies.

10.
Front Genet ; 10: 248, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30967900

RESUMEN

At least six different proteins of the spliceosome, including PRPF3, PRPF4, PRPF6, PRPF8, PRPF31, and SNRNP200, are mutated in autosomal dominant retinitis pigmentosa (adRP). These proteins have recently been shown to localize to the base of the connecting cilium of the retinal photoreceptor cells, elucidating this form of RP as a retinal ciliopathy. In the case of loss-of-function variants in these genes, pathogenicity can easily be ascribed. In the case of missense variants, this is more challenging. Furthermore, the exact molecular mechanism of disease in this form of RP remains poorly understood. In this paper we take advantage of the recently published cryo EM-resolved structure of the entire human spliceosome, to predict the effect of a novel missense variant in one component of the spliceosome; PRPF31, found in a patient attending the genetics eye clinic at Bristol Eye Hospital. Monoallelic variants in PRPF31 are a common cause of autosomal dominant retinitis pigmentosa (adRP) with incomplete penetrance. We use in vitro studies to confirm pathogenicity of this novel variant PRPF31 c.341T > A, p.Ile114Asn. This work demonstrates how in silico modeling of structural effects of missense variants on cryo-EM resolved protein complexes can contribute to predicting pathogenicity of novel variants, in combination with in vitro and clinical studies. It is currently a considerable challenge to assign pathogenic status to missense variants in these proteins.

11.
Front Cell Dev Biol ; 6: 8, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29473038

RESUMEN

The presence of single, non-motile "primary" cilia on the surface of epithelial cells has been well described since the 1960s. However, for decades these organelles were believed to be vestigial, with no remaining function, having lost their motility. It wasn't until 2003, with the discovery that proteins responsible for transport along the primary cilium are essential for hedgehog signaling in mice, that the fundamental importance of primary cilia in signal transduction was realized. Little more than a decade later, it is now clear that the vast majority of signaling pathways in vertebrates function through the primary cilium. This has led to the adoption of the term "the cells's antenna" as a description for the primary cilium. Primary cilia are particularly important during development, playing fundamental roles in embryonic patterning and organogenesis, with a suite of inherited developmental disorders known as the "ciliopathies" resulting from mutations in genes encoding cilia proteins. This review summarizes our current understanding of the role of these fascinating organelles in a wide range of signaling pathways.

12.
Gene ; 599: 78-86, 2017 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-27836664

RESUMEN

Vesicle shuttling is critical for many cellular and organismal processes, including embryonic development. GDI proteins contribute to vesicle shuttling by regulating the activity of Rab GTPases, controlling their cycling between the inactive cytosol and active membrane bound states. While identifying genes controlled by A-form DNA sequences we discovered a previously unknown member of the GDI family, GDI3. The GDI3 gene is found only in amphibians and fish and is developmentally expressed in Xenopus from neurula stages onwards in the neural plate, and subsequently in both dorsal and anterior structures. Depletion or over-expression of the GDI3 protein in Xenopus embryos gives rise to very similar phenotypes, suggesting that strict control of GDI3 protein levels is required for correct embryonic development. Our analysis suggests the evolutionary origins of GDI3 and that it is functionally distinct from GDI1. Predicted structural analysis of GDI3 suggests that the key difference between GDI1 and GDI3 lies in their lipid binding pockets.


Asunto(s)
Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Neurogénesis/fisiología , Proteínas de Xenopus/metabolismo , Xenopus/embriología , Xenopus/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Secuencia de Bases , Clonación Molecular , ADN/genética , Regulación del Desarrollo de la Expresión Génica , Inhibidores de Disociación de Guanina Nucleótido/química , Inhibidores de Disociación de Guanina Nucleótido/genética , Modelos Moleculares , Neurogénesis/genética , Filogenia , Xenopus/genética , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Proteínas de Unión al GTP rab/química , Proteínas de Unión al GTP rab/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda