Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Mass Spectrom Rev ; 32(5): 335-65, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23315723

RESUMEN

Tremendous progress in plant proteomics driven by mass spectrometry (MS) techniques has been made since 2000 when few proteomics reports were published and plant proteomics was in its infancy. These achievements include the refinement of existing techniques and the search for new techniques to address food security, safety, and health issues. It is projected that in 2050, the world's population will reach 9-12 billion people demanding a food production increase of 34-70% (FAO, 2009) from today's food production. Provision of food in a sustainable and environmentally committed manner for such a demand without threatening natural resources, requires that agricultural production increases significantly and that postharvest handling and food manufacturing systems become more efficient requiring lower energy expenditure, a decrease in postharvest losses, less waste generation and food with longer shelf life. There is also a need to look for alternative protein sources to animal based (i.e., plant based) to be able to fulfill the increase in protein demands by 2050. Thus, plant biology has a critical role to play as a science capable of addressing such challenges. In this review, we discuss proteomics especially MS, as a platform, being utilized in plant biology research for the past 10 years having the potential to expedite the process of understanding plant biology for human benefits. The increasing application of proteomics technologies in food security, analysis, and safety is emphasized in this review. But, we are aware that no unique approach/technology is capable to address the global food issues. Proteomics-generated information/resources must be integrated and correlated with other omics-based approaches, information, and conventional programs to ensure sufficient food and resources for human development now and in the future.


Asunto(s)
Inocuidad de los Alimentos/métodos , Espectrometría de Masas/métodos , Proteínas de Plantas/análisis , Plantas/química , Proteómica/métodos , Animales , Genómica/métodos , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Espectrometría de Masas/historia , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/genética , Plantas/genética , Plantas/microbiología , Proteómica/historia
2.
J Proteomics ; 93: 234-44, 2013 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23792822

RESUMEN

Sustainable energy is the need of the 21st century, not because of the numerous environmental and political reasons but because it is necessary to human civilization's energy future. Sustainable energy is loosely grouped into renewable energy, energy conservation, and sustainable transport disciplines. In this review, we deal with the renewable energy aspect focusing on the biomass from bioenergy crops to microalgae to produce biofuels to the utilization of high-throughput omics technologies, in particular proteomics in advancing our understanding and increasing biofuel production. We look at biofuel production by plant- and algal-based sources, and the role proteomics has played therein. This article is part of a Special Issue entitled: Translational Plant Proteomics.


Asunto(s)
Biocombustibles , Proteómica/métodos , Biomarcadores/metabolismo , Cianobacterias/genética , Cianobacterias/metabolismo , Jatropha/genética , Jatropha/metabolismo , Microalgas/genética , Microalgas/metabolismo , Energía Renovable , Saccharum/metabolismo , Sorghum/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda