RESUMEN
BACKGROUND: The pollen tube (PT) serves as a model system for investigating plant cell growth and morphogenesis. Ultrastructural studies are indispensable to complement data from physiological and genetic analyses, yet an effective method is lacking for PTs of the model plant Arabidopsis thaliana. METHODS: Here, we present reliable approaches for ultrastructural studies of Arabidopsis PTs, as well as an efficient technique for immunogold detection of cell wall epitopes. Using different fixation and embedding strategies, we show the amount of PT ultrastructural details that can be obtained by the different methods. RESULTS: Dozens of cross-sections can be obtained simultaneously by the approach, which facilitates and shortens the time for evaluation. In addition to in vitro-grown PTs, our study follows the route of PTs from germination, growth along the pistil, to the penetration of the dense stylar tissue, which requires considerable mechanical forces. To this end, PTs have different strategies from growing between cells but also between the protoplast and the cell wall and even within each other, where they share a partly common cell wall. The separation of PT cell walls in an outer and an inner layer reported for many plant species is less clear in Arabidopsis PTs, where these cell wall substructures are connected by a distinct transition zone. CONCLUSIONS: The major advancement of this method is the effective production of a large number of longitudinal and cross-sections that permits obtaining a detailed and representative picture of pollen tube structures in an unprecedented way. This is particularly important when comparing PTs of wild type and mutants to identify even subtle alterations in cytoarchitecture. Arabidopsis is an excellent plant for genetic manipulation, yet the PTs, several-times smaller compared to tobacco or lily, represent a technical challenge. This study reveals a method to overcome this problem and make Arabidopsis PTs more amenable to a combination of genetic and ultrastructural analyses.
Asunto(s)
Arabidopsis/ultraestructura , Tubo Polínico/ultraestructura , Criopreservación/métodos , Crioultramicrotomía/métodos , Inmunohistoquímica/métodos , Microscopía Electrónica de Transmisión/métodos , Adhesión del Tejido/métodosRESUMEN
BACKGROUND: Leucine-rich repeat extensins (LRXs) are extracellular proteins consisting of an N-terminal leucine-rich repeat (LRR) domain and a C-terminal extensin domain containing the typical features of this class of structural hydroxyproline-rich glycoproteins (HRGPs). The LRR domain is likely to bind an interaction partner, whereas the extensin domain has an anchoring function to insolubilize the protein in the cell wall. Based on the analysis of the root hair-expressed LRX1 and LRX2 of Arabidopsis thaliana, LRX proteins are important for cell wall development. The importance of LRX proteins in non-root hair cells and on the structural changes induced by mutations in LRX genes remains elusive. RESULTS: The LRX gene family of Arabidopsis consists of eleven members, of which LRX3, LRX4, and LRX5 are expressed in aerial organs, such as leaves and stem. The importance of these LRX genes for plant development and particularly cell wall formation was investigated. Synergistic effects of mutations with gradually more severe growth retardation phenotypes in double and triple mutants suggest a similar function of the three genes. Analysis of cell wall composition revealed a number of changes to cell wall polysaccharides in the mutants. CONCLUSIONS: LRX3, LRX4, and LRX5, and most likely LRX proteins in general, are important for cell wall development. Due to the complexity of changes in cell wall structures in the lrx mutants, the exact function of LRX proteins remains to be determined. The increasingly strong growth-defect phenotypes in double and triple mutants suggests that the LRX proteins have similar functions and that they are important for proper plant development.
Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Glicoproteínas/genética , Leucina/metabolismo , Secuencia de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Glicoproteínas/metabolismo , Datos de Secuencia Molecular , Alineación de SecuenciaRESUMEN
The establishment and maintenance of peripheral T cells is important to ensure appropriate immunity. In mammals, T cells are produced in the thymus before seeding the periphery early in life, and thereafter progressive thymus involution impairs new T cell production. Yet, peripheral T cells are maintained lifelong at approximately similar cell numbers. The question thus arises: what are the mechanisms that enable the maintenance of the appropriate number of circulating T cells, ensuring that T cell numbers are neither too low nor too high? Here, we highlight recent research suggesting a key role for coronin 1, a member of the evolutionarily conserved family of coronin proteins, in both allowing T cells to reach as well as maintain their appropriate cell population size. This cell population size controlling pathway was found to be conserved in amoeba, mice and human. We propose that coronin 1 is an integral part of a cell-intrinsic pathway that couples cell density information with prosurvival signalling thereby regulating the appropriate number of peripheral T cells.
RESUMEN
Maintenance of cell population size is fundamental to the proper functioning of multicellular organisms. Here, we describe a cell-intrinsic cell density-sensing pathway that enabled T cells to reach and maintain an appropriate population size. This pathway operated "kin-to-kin" or between identical or similar T cell populations occupying a niche within a tissue or organ, such as the lymph nodes, spleen, and blood. We showed that this pathway depended on the cell density-dependent abundance of the evolutionarily conserved protein coronin 1, which coordinated prosurvival signaling with the inhibition of cell death until the cell population reached threshold densities. At or above threshold densities, coronin 1 expression peaked and remained stable, thereby resulting in the initiation of apoptosis through kin-to-kin intercellular signaling to return the cell population to the appropriate cell density. This cell population size-controlling pathway was conserved from amoeba to humans, thus providing evidence for the existence of a coronin-regulated, evolutionarily conserved mechanism by which cells are informed of and coordinate their relative population size.
Asunto(s)
4-Butirolactona , Proteínas de Microfilamentos , Humanos , Densidad de Población , Proteínas de Microfilamentos/metabolismo , Transducción de SeñalRESUMEN
The control of T cell survival is crucial for defense against infectious pathogens or emerging cancers. Although the survival of peripheral naïve T cells has been proposed to be controlled by interleukin-7 (IL-7) signaling and T cell receptor (TCR) activation by peptide-loaded major histocompatibility complexes (pMHC), the essential roles for these pathways in thymic output and T cell proliferation have complicated the analysis of their contributions to T cell survival. Here, we showed that the WD repeatcontaining protein coronin 1, which is dispensable for thymic selection and output, promoted naïve T cell survival in the periphery in a manner that was independent of TCR and IL-7 signaling. Coronin 1 was required for the maintenance of the basal activity of phosphoinositide 3-kinase δ (PI3Kδ), thereby suppressing caspase 8mediated apoptosis. These results therefore reveal a coronin 1dependent PI3Kδ pathway that is independent of pMHC:TCR and IL-7 signaling and essential for peripheral T cell survival.
Asunto(s)
4-Butirolactona , Caspasa 8 , Interleucina-7 , Receptores de Antígenos de Linfocitos T , Linfocitos T , 4-Butirolactona/análogos & derivados , Animales , Caspasa 8/genética , Caspasa 8/metabolismo , Supervivencia Celular , Ratones Endogámicos C57BL , Ratones Noqueados , Linfocitos T/metabolismoRESUMEN
Plant cells are encapsulated by cell walls whose properties largely determine cell growth. We have previously identified the rol1-2 mutant, which shows defects in seedling root and shoot development. rol1-2 is affected in the Rhamnose synthase 1 (RHM1) and shows alterations in the structures of Rhamnogalacturonan I (RG I) and RG II, two rhamnose-containing pectins. The data presented here shows that root tissue of the rol1-2 mutant fails to properly differentiate the cell wall in cell corners and accumulates excessive amounts of callose, both of which likely alter the physical properties of cells. A surr (suppressor of the rol1-2 root developmental defect) mutant was identified that alleviates the cell growth defects in rol1-2. The cell wall differentiation defect is re-established in the rol1-2 surr mutant and callose accumulation is reduced compared to rol1-2. The surr mutation is an allele of the cyclin-dependent kinase 8 (CDK8), which encodes a component of the mediator complex that influences processes central to plant growth and development. Together, the identification of the surr mutant suggests that changes in cell wall composition and turnover in the rol1-2 mutant have a significant impact on cell growth and reveals a function of CDK8 in cell wall architecture and composition.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Diferenciación Celular/fisiología , Quinasa 8 Dependiente de Ciclina/metabolismo , Proteínas de Arabidopsis/genética , Pared Celular/metabolismo , Quinasa 8 Dependiente de Ciclina/genética , Raíces de Plantas/genética , Ramnosa/análisis , Plantones/genéticaRESUMEN
Quantification of mechanical properties of tissues, living cells, and cellular components is crucial for the modeling of plant developmental processes such as mechanotransduction. Pollen tubes are tip-growing cells that provide an ideal system to study the mechanical properties at the single cell level. In this article, a lab-on-a-chip (LOC) device is developed to quantitatively measure the biomechanical properties of lily (Lilium longiflorum) pollen tubes. A single pollen tube is fixed inside the microfluidic chip at a specific orientation and subjected to compression by a soft membrane. By comparing the deformation of the pollen tube at a given external load (compressibility) and the effect of turgor pressure on the tube diameter (stretch ratio) with finite element modeling, its mechanical properties are determined. The turgor pressure and wall stiffness of the pollen tubes are found to decrease considerably with increasing initial diameter of the pollen tubes. This observation supports the hypothesis that tip-growth is regulated by a delicate balance between turgor pressure and wall stiffness. The LOC device is modular and adaptable to a variety of cells that exhibit tip-growth, allowing for the straightforward measurement of mechanical properties.