Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Glob Chang Biol ; 26(10): 5942-5964, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32628332

RESUMEN

Smallholder farmers in sub-Saharan Africa (SSA) currently grow rainfed maize with limited inputs including fertilizer. Climate change may exacerbate current production constraints. Crop models can help quantify the potential impact of climate change on maize yields, but a comprehensive multimodel assessment of simulation accuracy and uncertainty in these low-input systems is currently lacking. We evaluated the impact of varying [CO2 ], temperature and rainfall conditions on maize yield, for different nitrogen (N) inputs (0, 80, 160 kg N/ha) for five environments in SSA, including cool subhumid Ethiopia, cool semi-arid Rwanda, hot subhumid Ghana and hot semi-arid Mali and Benin using an ensemble of 25 maize models. Models were calibrated with measured grain yield, plant biomass, plant N, leaf area index, harvest index and in-season soil water content from 2-year experiments in each country to assess their ability to simulate observed yield. Simulated responses to climate change factors were explored and compared between models. Calibrated models reproduced measured grain yield variations well with average relative root mean square error of 26%, although uncertainty in model prediction was substantial (CV = 28%). Model ensembles gave greater accuracy than any model taken at random. Nitrogen fertilization controlled the response to variations in [CO2 ], temperature and rainfall. Without N fertilizer input, maize (a) benefited less from an increase in atmospheric [CO2 ]; (b) was less affected by higher temperature or decreasing rainfall; and (c) was more affected by increased rainfall because N leaching was more critical. The model intercomparison revealed that simulation of daily soil N supply and N leaching plays a crucial role in simulating climate change impacts for low-input systems. Climate change and N input interactions have strong implications for the design of robust adaptation approaches across SSA, because the impact of climate change in low input systems will be modified if farmers intensify maize production with balanced nutrient management.


Asunto(s)
Cambio Climático , Zea mays , Fertilizantes , Malí , Nitrógeno
2.
Nat Clim Chang ; 13(1): 91-97, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36684409

RESUMEN

Trees sustain livelihoods and mitigate climate change but a predominance of trees outside forests and limited resources make it difficult for many tropical countries to conduct automated nation-wide inventories. Here, we propose an approach to map the carbon stock of each individual overstory tree at the national scale of Rwanda using aerial imagery from 2008 and deep learning. We show that 72% of the mapped trees are located in farmlands and savannas and 17% in plantations, accounting for 48.6% of the national aboveground carbon stocks. Natural forests cover 11% of the total tree count and 51.4% of the national carbon stocks, with an overall carbon stock uncertainty of 16.9%. The mapping of all trees allows partitioning to any landscapes classification and is urgently needed for effective planning and monitoring of restoration activities as well as for optimization of carbon sequestration, biodiversity and economic benefits of trees.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda