Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Results Phys ; 24: 104096, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33816092

RESUMEN

This paper deals with modeling and simulation of the novel coronavirus in which the infectious individuals are divided into three subgroups representing three forms of infection. The rigorous analysis of the mathematical model is provided. We provide also a rigorous derivation of the basic reproduction number R 0 . For R 0 < 1 , we prove that the Disease Free Equilibium (DFE) is Globally Asymptotically Stable (GAS), thus COVID-19 extincts; whereas for R 0 > 1 , we found the co-existing phenomena under some assumptions and parametric values. Elasticity indices for R 0 with respect to different parameters are calculated with baseline parameter values estimated. We also prove that a transcritical bifurcation occurs at R 0 = 1 . Taking into account the control strategies like screening, treatment and isolation (social distancing measures), we present the optimal control problem of minimizing the cost due to the application of these measures. By reducing the values of some parameters, such as death rates (representing a management effort for all categories of people) and recovered rates (representing the action of reduction in transmission, improved screening, treatment for individuals diagnosed positive to COVID-19 and the implementation of barrier measures limiting contamination for undiagnosed individuals), it appears that after 140 - 170 days, the peak of the pandemic is reached and shows that by continuing with this strategy, COVID-19 could be eliminated in the population.

2.
J Biol Dyn ; 10: 347-65, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27296784

RESUMEN

Human African Trypanosomiasis (HAT) and Nagana in cattle, commonly called sleeping sickness, is caused by trypanosome protozoa transmitted by bites of infected tsetse flies. We present a deterministic model for the transmission of HAT caused by Trypanosoma brucei gambiense between human hosts, cattle hosts and tsetse flies. The model takes into account the growth of the tsetse fly, from its larval stage to the adult stage. Disease in the tsetse fly population is modeled by three compartments, and both the human and cattle populations are modeled by four compartments incorporating the two stages of HAT. We provide a rigorous derivation of the basic reproduction number R0. For R0 < 1, the disease free equilibrium is globally asymptotically stable, thus HAT dies out; whereas (assuming no return to susceptibility) for R0 >1, HAT persists. Elasticity indices for R0 with respect to different parameters are calculated with baseline parameter values appropriate for HAT in West Africa; indicating parameters that are important for control strategies to bring R0 below 1. Numerical simulations with R0 > 1 show values for the infected populations at the endemic equilibrium, and indicate that with certain parameter values, HAT could not persist in the human population in the absence of cattle.


Asunto(s)
Enfermedades de los Bovinos/transmisión , Modelos Biológicos , Trypanosoma brucei gambiense/aislamiento & purificación , Tripanosomiasis Africana/transmisión , Animales , Bovinos , Humanos , Insectos Vectores/parasitología , Tripanosomiasis Africana/veterinaria , Moscas Tse-Tse/crecimiento & desarrollo , Moscas Tse-Tse/parasitología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda