RESUMEN
Efficient transportation and delivery of analytes to the surface of optical sensors are crucial for overcoming limitations in diffusion-limited transport and analyte sensing. In this study, we propose a novel approach that combines metasurface optics with optofluidics-enabled active transport of extracellular vesicles (EVs). By leveraging this combination, we show that we can rapidly capture EVs and detect their adsorption through a color change generated by a specially designed optical metasurface that produces structural colors. Our results demonstrate that the integration of optofluidics and metasurface optics enables spectrometer-less and label-free colorimetric read-out for EV concentrations as low as 107 EVs/ml, achieved within a short incubation time of two minutes.
Asunto(s)
Colorimetría , Vesículas Extracelulares , Adsorción , DifusiónRESUMEN
Double Nanohole Plasmonic Tweezers (DNH) have emerged as a powerful approach for confining light to sub-wavelength volume, enabling the trapping of nanoscale particles much smaller than the wavelength of light. However, to circumvent plasmonic heating effects, DNH tweezers are typically operated off-resonance, resulting in reduced optical forces and field enhancements. In this study, we introduce a novel DNH design with a reflector layer, enabling on-resonance illumination while minimizing plasmonic heating. This design efficiently dissipates heat and redistributes the electromagnetic hotspots, making them more accessible for trapping nanoscale particles and enhancing light-matter interactions. We also demonstrate low-power trapping and release of small extracellular vesicles. Our work opens new possibilities for trapping-assisted Surface Enhanced Raman Spectroscopy (SERS), plasmon-enhanced imaging, and single photon emission applications that demand strong light-matter interactions.
RESUMEN
This study addresses the challenge of trapping nanoscale biological particles using optical tweezers without the photothermal heating effect and the limitation presented by the diffraction limit. Optical tweezers are effective for trapping microscopic biological objects but not for nanoscale specimens due to the diffraction limit. To overcome this, we present an approach that uses optical anapole states in all-dielectric nanoantenna systems on distributed Bragg reflector substrates to generate strong optical gradient force and potential on nanoscale biological objects with negligible temperature rise below 1 K. The anapole antenna condenses the accessible electromagnetic energy to scales as small as 30 nm. Using this approach, we successfully trapped nanosized extracellular vesicles and supermeres (approximately 25 nm in size) using low laser power of only 10.8 mW. This nanoscale optical trapping platform has great potential for single molecule analysis while precluding photothermal degradation.
RESUMEN
Photonic crystal cavities with bowtie defects that combine ultrahigh Q and ultralow mode volume are theoretically studied for low-power nanoscale optical trapping. By harnessing the localized heating of the water layer near the bowtie region, combined with an applied alternating current electric field, this system provides long-range electrohydrodynamic transport of particles with average radial velocities of 30 µm/s towards the bowtie region on demand by switching the input wavelength. Once transported to a given bowtie region, synergistic interaction of optical gradient and attractive negative thermophoretic forces stably trap a 10 nm quantum dot in a potential well with a depth of 10 k_{B}T using a mW input power.
RESUMEN
Dielectric metasurfaces governed by bound states in the continuum (BIC) are actively investigated for achieving high-quality factors and strong electromagnetic field enhancements. Traditional approaches reported for tuning the performance of quasi-BIC metasurfaces include tuning the resonator size, period, and structure symmetry. Here we propose and experimentally demonstrate an alternative approach through engineering slots within a zigzag array of elliptical silicon resonators. Through analytical theory, three-dimensional electromagnetic modeling, and infrared spectroscopy, we systematically investigate the spectral responses and field distributions of the slotted metasurface in the mid-IR. Our results show that by introducing slots, the electric field intensity enhancement near the apex and the quality factor of the quasi-BIC resonance are increased by a factor of 2.1 and 3.3, respectively, in comparison to the metasurface without slots. Furthermore, the slotted metasurface also provides extra regions of electromagnetic enhancement and confinement, which holds enormous potential in particle trapping, sensing, and emission enhancement.
Asunto(s)
Campos Electromagnéticos , Silicio , Vibración , Espectrofotometría Infrarroja , ElectricidadRESUMEN
To address the challenges of developing a scalable system of an on-chip integrated quantum emitter, we propose to leverage the loss in our hybrid plasmonic-photonic structure to simultaneously achieve Purcell enhancement as well as on-chip maneuvering of nanoscale emitter via optical trapping with guided excitation-emission routes. In this report, we have analyzed the feasibility of the functional goals of our proposed system in the metric of trapping strength (â¼8KBT), Purcell factor (>1000â¼), and collection efficiency (â¼10%). Once realized, the scopes of the proposed device can be advanced to develop a scalable platform for integrated quantum technology.
RESUMEN
Low-power trapping of nanoscale objects can be achieved by using the enhanced fields near plasmonic nanoantennas. Unfortunately, in this approach the trap site is limited to the position of the plasmonic hotspots and continuous dynamic manipulation is not feasible. Here, we report a low-frequency electrothermoplasmonic tweezer (LFET) that provides low-power, high-stability and continuous dynamic manipulation of a single nanodiamond. LFET harnesses the combined action of the laser illumination of a plasmonic nanopillar antenna array and low-frequency alternating current (ac) electric field to establish an electrohydrodynamic potential capable of the stable trapping and dynamic manipulation of single nanodiamonds. We experimentally demonstrate the fast transport, trapping, and dynamic manipulation of a single nanodiamond using a low-frequency ac field below 5 kHz and low-laser power of 1 mW. This nanotweezer platform for nanodiamond manipulation holds promise for the scalable assembly of single photon sources for quantum information processing and low noise quantum sensors.
Asunto(s)
Nanodiamantes , Electricidad , Rayos Láser , Luz , FotonesRESUMEN
Titanium nitride is considered a promising alternative plasmonic material and is known to exhibit localized surface plasmon resonances within the near-infrared biological transparency window. Here, local heating efficiencies of disk-shaped nanoparticles made of titanium nitride and gold are compared in the visible and near-infrared regions numerically and experimentally with samples fabricated using e-beam lithography. Results show that plasmonic titanium nitride nanodisks are efficient local heat sources and outperform gold nanodisks in the biological transparency window, dispensing the need for complex particle geometries.
Asunto(s)
Nanopartículas del Metal/química , Resonancia por Plasmón de Superficie , Titanio/química , Oro/química , CalefacciónRESUMEN
This paper showcases an experimental demonstration of near-field optical trapping and dynamic manipulation of an individual extracellular vesicle. This is accomplished through the utilization of a plasmonic dielectric nanoantenna designed to support an optical anapole state-a non-radiating optical state resulting from the destructive interference between electric and toroidal dipoles in the far-field, leading to robust near-field enhancement. To further enhance the field intensity associated with the optical anapole state, a plasmonic mirror is incorporated, thereby boosting trapping capabilities. In addition to demonstrating near-field optical trapping, the study achieves dynamic manipulation of extracellular vesicles by harnessing the thermoelectric effect. This effect is induced in the presence of an ionic surfactant, cetyltrimethylammonium chloride (CTAC), combined with plasmonic heating. Furthermore, the thermoelectric effect improves trapping stability by introducing a wide and deep trapping potential. In summary, our hybrid plasmonic-dielectric trapping platform offers a versatile approach for actively transporting, stably trapping, and dynamically manipulating individual extracellular vesicles.
RESUMEN
Manipulating fluids by light at the micro/nanoscale has been a long-sought-after goal for lab-on-a-chip applications. Plasmonic heating has been demonstrated to control microfluidic dynamics due to the enhanced and confined light absorption from the intrinsic losses of metals. Dielectrics, the counterpart of metals, has been used to avoid undesired thermal effects due to its negligible light absorption. Here, we report an innovative optofluidic system that leverages a quasi-BIC-driven all-dielectric metasurface to achieve subwavelength scale control of temperature and fluid motion. Our experiments show that suspended particles down to 200 nanometers can be rapidly aggregated to the center of the illuminated metasurface with a velocity of tens of micrometers per second, and up to millimeter-scale particle transport is demonstrated. The strong electromagnetic field enhancement of the quasi-BIC resonance increases the flow velocity up to three times compared with the off-resonant situation by tuning the wavelength within several nanometers range. We also experimentally investigate the dynamics of particle aggregation with respect to laser wavelength and power. A physical model is presented and simulated to elucidate the phenomena and surfactants are added to the nanoparticle colloid to validate the model. Our study demonstrates the application of the recently emerged all-dielectric thermonanophotonics in dealing with functional liquids and opens new frontiers in harnessing non-plasmonic nanophotonics to manipulate microfluidic dynamics. Moreover, the synergistic effects of optofluidics and high-Q all-dielectric nanostructures hold enormous potential in high-sensitivity biosensing applications.
RESUMEN
Heterogeneous nanoscale extracellular vesicles (EVs) are of significant interest for disease detection, monitoring, and therapeutics. However, trapping these nano-sized EVs using optical tweezers has been challenging due to their small size. Plasmon-enhanced optical trapping offers a solution. Nevertheless, existing plasmonic tweezers have limited throughput and can take tens of minutes for trapping for low particle concentrations. Here, we present an innovative approach called geometry-induced electrohydrodynamic tweezers (GET) that overcomes these limitations. GET generates multiple electrohydrodynamic potentials, allowing parallel transport and trapping of single EVs within seconds. By integrating nanoscale plasmonic cavities at the center of each GET trap, single EVs can be placed near plasmonic cavities, enabling instant plasmon-enhanced optical trapping upon laser illumination without detrimental heating effects. These non-invasive scalable hybrid nanotweezers open new horizons for high-throughput tether-free plasmon-enhanced single EV trapping and spectroscopy. Other potential areas of impact include nanoplastics characterization, and scalable hybrid integration for quantum photonics.
Asunto(s)
Vesículas Extracelulares , Óptica y Fotónica , Pinzas Ópticas , LuzRESUMEN
Owing to the heterogeneity of exosomes in size and biomolecular composition, there is a need for new approaches for trapping, manipulating, and sorting of single exosomes in solution. Due to their small size ranging from 30 nm to 150 nm and their relatively low refractive index, their stable trapping using optical tweezers has been met with challenges. Trapping exosomes in an optical trap requires nearly 100 mW of input power, which predisposes them to photo-induced damage and membrane rupture at the laser focus. Here, we report a high stability opto-thermo-electrohydrodynamic tweezer for the stable stand-off trapping of single exosomes based on a concentric nanohole array (CNA) using laser illumination and an a.c. field. The CNA system generates two regions of electrohydrodynamic potentials several microns away from the laser focus where single exosomes are trapped. We demonstrate the rapid trapping within seconds, and selective dynamic manipulation of exosomes based on size using only 4.2 mW of input laser power. The proposed platform opens up a promising approach for stabilizing single exosomes in solution and controlling their distribution based on size without the risk of photo-induced damage.
RESUMEN
Optical trapping with plasmonic double nanohole (DNH) apertures has proven to be an efficient method for trapping sub-50 nm particles due to their suppressed plasmonic heating effect and very high electric field enhancement in the gap region of the aperture. However, plasmonic tweezers are generally diffusion-limited, requiring particles to diffuse down to a few tens of nanometres from the high field enhancement regions before they can be trapped. The loading of target particles to the plasmonic hotspots can take several minutes for diluted samples. In this work, rapid particle transport and trapping of a 25 nm polystyrene sphere is demonstrated, leveraging an electrothermoplasmonic flow induced upon application of an AC field in the presence of a laser-induced temperature gradient. Using this approach, we demonstrate the rapid transport of a 25 nm polystyrene particle across a distance of 63 µm and trapping at the DNH under 16 s. This platform shows great potential for applications involving simultaneous trapping and plasmon-enhanced spectroscopies, such as Raman enhancement via the intense electric field enhancement in the DNH gap.
RESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
Optical tweezers have emerged as a powerful tool for the non-invasive trapping and manipulation of colloidal particles and biological cells1,2. However, the diffraction limit precludes the low-power trapping of nanometre-scale objects. Substantially increasing the laser power can provide enough trapping potential depth to trap nanoscale objects. Unfortunately, the substantial optical intensity required causes photo-toxicity and thermal stress in the trapped biological specimens3. Low-power near-field nano-optical tweezers comprising plasmonic nanoantennas and photonic crystal cavities have been explored for stable nanoscale object trapping4-13. However, the demonstrated approaches still require that the object is trapped at the high-light-intensity region. We report a new kind of optically controlled nanotweezers, called opto-thermo-electrohydrodynamic tweezers, that enable the trapping and dynamic manipulation of nanometre-scale objects at locations that are several micrometres away from the high-intensity laser focus. At the trapping locations, the nanoscale objects experience both negligible photothermal heating and light intensity. Opto-thermo-electrohydrodynamic tweezers employ a finite array of plasmonic nanoholes illuminated with light and an applied a.c. electric field to create the spatially varying electrohydrodynamic potential that can rapidly trap sub-10 nm biomolecules at femtomolar concentrations on demand. This non-invasive optical nanotweezing approach is expected to open new opportunities in nanoscience and life science by offering an unprecedented level of control of nano-sized objects, including photo-sensitive biological molecules.
Asunto(s)
Nanoestructuras/ultraestructura , Pinzas Ópticas , Animales , Bovinos , Electricidad , Hidrodinámica , Nanoestructuras/química , Nanotecnología/instrumentación , Tamaño de la Partícula , Fotones , Poliestirenos/análisis , Albúmina Sérica Bovina/análisis , TemperaturaRESUMEN
The intrinsic loss in a plasmonic metasurface is usually considered to be detrimental for device applications. Using plasmonic loss to our advantage, we introduce a thermoplasmonic metasurface that enables high-throughput large-ensemble nanoparticle assembly in a lab-on-a-chip platform. In our work, an array of subwavelength nanoholes in a metal film is used as a plasmonic metasurface that supports the excitation of localized surface plasmon and Bloch surface plasmon polariton waves upon optical illumination and provides a platform for molding both optical and thermal landscapes to achieve a tunable many-particle assembling process. The demonstrated many-particle trapping occurs against gravity in an inverted configuration where the light beam first passes through the nanoparticle suspension before illuminating the thermoplasmonic metasurface, a feat previously thought to be impossible. We also report an extraordinarily enhanced electrothermoplasmonic flow in the region of the thermoplasmonic nanohole metasurface, with comparatively larger transport velocities in comparison to the unpatterned region. This thermoplasmonic metasurface could enable possibilities for myriad applications in molecular analysis, quantum photonics, and self-assembly and creates a versatile platform for exploring nonequilibrium physics.
RESUMEN
Plasmon-enhanced optical trapping is being actively studied to provide efficient manipulation of nanometre-sized objects. However, a long-standing issue with previously proposed solutions is how to controllably load the trap on-demand without relying on Brownian diffusion. Here, we show that the photo-induced heating of a nanoantenna in conjunction with an applied a.c. electric field can initiate rapid microscale fluid motion and particle transport with a velocity exceeding 10â µmâ s(-1), which is over two orders of magnitude faster than previously predicted. Our electrothermoplasmonic device enables on-demand long-range and rapid delivery of single nano-objects to specific plasmonic nanoantennas, where they can be trapped and even locked in place. We also present a physical model that elucidates the role of both heat-induced fluidic motion and plasmonic field enhancement in the plasmon-assisted optical trapping process. Finally, by applying a d.c. field or low-frequency a.c. field (below 10â Hz) while the particle is held in the trap by the gradient force, the trapped nano-objects can be immobilized into plasmonic hotspots, thereby providing the potential for effective low-power nanomanufacturing on-chip.