Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Clin Sci (Lond) ; 135(17): 2143-2163, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34486670

RESUMEN

Increased level of C-reactive protein (CRP) is a risk factor for cardiovascular diseases, including myocardial infarction and hypertension. Here, we analyzed the effects of CRP overexpression on cardiac susceptibility to ischemia/reperfusion (I/R) injury in adult spontaneously hypertensive rats (SHR) expressing human CRP transgene (SHR-CRP). Using an in vivo model of coronary artery occlusion, we found that transgenic expression of CRP predisposed SHR-CRP to repeated and prolonged ventricular tachyarrhythmias. Excessive ischemic arrhythmias in SHR-CRP led to a significant reduction in infarct size (IS) compared with SHR. The proarrhythmic phenotype in SHR-CRP was associated with altered heart and plasma eicosanoids, myocardial composition of fatty acids (FAs) in phospholipids, and autonomic nervous system imbalance before ischemia. To explain unexpected IS-limiting effect in SHR-CRP, we performed metabolomic analysis of plasma before and after ischemia. We also determined cardiac ischemic tolerance in hearts subjected to remote ischemic perconditioning (RIPer) and in hearts ex vivo. Acute ischemia in SHR-CRP markedly increased plasma levels of multiple potent cardioprotective molecules that could reduce IS at reperfusion. RIPer provided IS-limiting effect in SHR that was comparable with myocardial infarction observed in naïve SHR-CRP. In hearts ex vivo, IS did not differ between the strains, suggesting that extra-cardiac factors play a crucial role in protection. Our study shows that transgenic expression of human CRP predisposes SHR-CRP to excess ischemic ventricular tachyarrhythmias associated with a drop of pump function that triggers myocardial salvage against lethal I/R injury likely mediated by protective substances released to blood from hypoxic organs and tissue at reperfusion.


Asunto(s)
Hipertensión/complicaciones , Daño por Reperfusión Miocárdica/prevención & control , Taquicardia Ventricular/etiología , Fibrilación Ventricular/etiología , Potenciales de Acción , Animales , Presión Sanguínea , Proteína C-Reactiva/genética , Proteína C-Reactiva/metabolismo , Modelos Animales de Enfermedad , Frecuencia Cardíaca , Humanos , Hipertensión/metabolismo , Hipertensión/fisiopatología , Masculino , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/metabolismo , Miocardio/patología , Ratas Endogámicas SHR , Ratas Transgénicas , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatología , Fibrilación Ventricular/metabolismo , Fibrilación Ventricular/fisiopatología
2.
Int J Mol Sci ; 22(20)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34681669

RESUMEN

Aging attenuates cardiac tolerance to ischemia/reperfusion (I/R) associated with defects in protective cell signaling, however, the onset of this phenotype has not been completely investigated. This study aimed to compare changes in response to I/R and the effects of remote ischemic preconditioning (RIPC) in the hearts of younger adult (3 months) and mature adult (6 months) male Wistar rats, with changes in selected proteins of protective signaling. Langendorff-perfused hearts were exposed to 30 min I/120 min R without or with prior three cycles of RIPC (pressure cuff inflation/deflation on the hind limb). Infarct size (IS), incidence of ventricular arrhythmias and recovery of contractile function (LVDP) served as the end points. In both age groups, left ventricular tissue samples were collected prior to ischemia (baseline) and after I/R, in non-RIPC controls and in RIPC groups to detect selected pro-survival proteins (Western blot). Maturation did not affect post-ischemic recovery of heart function (Left Ventricular Developed Pressure, LVDP), however, it increased IS and arrhythmogenesis accompanied by decreased levels and activity of several pro-survival proteins and by higher levels of pro-apoptotic proteins in the hearts of elder animals. RIPC reduced the occurrence of reperfusion-induced ventricular arrhythmias, IS and contractile dysfunction in younger animals, and this was preserved in the mature adults. RIPC did not increase phosphorylated protein kinase B (p-Akt)/total Akt ratio, endothelial nitric oxide synthase (eNOS) and protein kinase Cε (PKCε) prior to ischemia but only after I/R, while phosphorylated glycogen synthase kinase-3ß (GSK3ß) was increased (inactivated) before and after ischemia in both age groups coupled with decreased levels of pro-apoptotic markers. We assume that resistance of rat heart to I/R injury starts to already decline during maturation, and that RIPC may represent a clinically relevant cardioprotective intervention in the elder population.


Asunto(s)
Precondicionamiento Isquémico Miocárdico , Daño por Reperfusión Miocárdica/patología , Miocardio/metabolismo , Envejecimiento , Animales , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hemodinámica , Masculino , Daño por Reperfusión Miocárdica/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosforilación , Proteína Quinasa C-epsilon/genética , Proteína Quinasa C-epsilon/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar
3.
Int J Mol Sci ; 21(20)2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096720

RESUMEN

While necroptosis has been shown to contribute to the pathogenesis of post-infarction heart failure (HF), the role of autophagy remains unclear. Likewise, linkage between these two cell death modalities has not been sufficiently investigated. HF was induced by 60-min left coronary occlusion in adult Wistar rats and heart function was assessed 6 weeks later followed by immunoblotting analysis of necroptotic and autophagic proteins in both the left (LV) and right ventricle (RV). HF had no effect on RIP1 and RIP3 expression. PhosphoSer229-RIP3, acting as a pro-necroptotic signal, was increased in LV while deceased in RV of failing hearts. Total MLKL was elevated in RV only. Decrease in pSer555-ULK1, increase in pSer473-Akt and no significant elevation in beclin-1 and LC3-II/I ratio indicated rather a lowered rate of autophagy in LV. No beclin-1 upregulation and decreased LC3 processing also suggested the inhibition of both autophagosome formation and maturation in RV of failing hearts. In contrast, p89 PARP1 fragment, a marker of executed apoptosis, was increased in RV only. This is the first study showing a different signaling in ventricles of the late phase of post-infarction HF, highlighting necroptosis itself rather than its linkage with autophagy in LV, and apoptosis in RV.


Asunto(s)
Apoptosis , Insuficiencia Cardíaca/patología , Infarto del Miocardio/patología , Animales , Apoptosis/fisiología , Autofagia/fisiología , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Ventrículos Cardíacos/patología , Masculino , Infarto del Miocardio/complicaciones , Necroptosis/fisiología , Tamaño de los Órganos , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas Sprague-Dawley , Ratas Wistar , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Transducción de Señal
4.
J Cell Mol Med ; 23(9): 6429-6441, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31328381

RESUMEN

Necroptosis has been recognized in heart failure (HF). In this study, we investigated detailed necroptotic signalling in infarcted and non-infarcted areas separately and its mechanistic link with main features of HF. Post-infarction HF in rats was induced by left coronary occlusion (60 minutes) followed by 42-day reperfusion. Heart function was assessed echocardiographically. Molecular signalling and proposed mechanisms (oxidative stress, collagen deposition and inflammation) were investigated in whole hearts and in subcellular fractions when appropriate. In post-infarction failing hearts, TNF and pSer229-RIP3 levels were comparably increased in both infarcted and non-infarcted areas. Its cytotoxic downstream molecule p-MLKL, indicating necroptosis execution, was detected in infarcted area. In non-infarcted area, despite increased pSer229-RIP3, p-MLKL was present in neither whole cells nor the cell membrane known to be associated with necroptosis execution. Likewise, increased membrane lipoperoxidation and NOX2 levels unlikely promoted pro-necroptotic environment in non-infarcted area. Collagen deposition and the inflammatory csp-1-IL-1ß axis were active in both areas of failing hearts, while being more pronounced in infarcted tissue. Although apoptotic proteins were differently expressed in infarcted and non-infarcted tissue, apoptosis was found to play an insignificant role. p-MLKL-driven necroptosis and inflammation while inflammation only (without necroptotic cell death) seem to underlie fibrotic healing and progressive injury in infarcted and non-infarcted areas of failing hearts, respectively. Upregulation of pSer229-RIP3 in both HF areas suggests that this kinase, associated with both necroptosis and inflammation, is likely to play a dual role in HF progression.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , Inflamación/metabolismo , Infarto del Miocardio/metabolismo , Necroptosis/fisiología , Transducción de Señal/fisiología , Animales , Apoptosis/fisiología , Muerte Celular/fisiología , Masculino , Miocitos Cardíacos/metabolismo , Necrosis/metabolismo , Estrés Oxidativo/fisiología , Ratas , Ratas Sprague-Dawley , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Regulación hacia Arriba/fisiología
5.
Clin Sci (Lond) ; 133(8): 939-951, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30979784

RESUMEN

Epoxyeicosatrienoic acids (EETs) and their synthetic analogs have cardiovascular protective effects. Here, we investigated the action of a novel EET analog EET-B on the progression of post-myocardial infarction (MI) heart failure in spontaneously hypertensive rats (SHR). Adult male SHR were divided into vehicle- and EET-B (10 mg/kg/day; p.o., 9 weeks)-treated groups. After 2 weeks of treatment, rats were subjected to 30-min left coronary artery occlusion or sham operation. Systolic blood pressure (SBP) and echocardiography (ECHO) measurements were performed at the beginning of study, 4 days before, and 7 weeks after MI. At the end of the study, tissue samples were collected for histological and biochemical analyses. We demonstrated that EET-B treatment did not affect blood pressure and cardiac parameters in SHR prior to MI. Fractional shortening (FS) was decreased to 18.4 ± 1.0% in vehicle-treated MI rats compared with corresponding sham (30.6 ± 1.0%) 7 weeks following MI induction. In infarcted SHR hearts, EET-B treatment improved FS (23.7 ± 0.7%), markedly increased heme oxygenase-1 (HO-1) immunopositivity in cardiomyocytes and reduced cardiac inflammation and fibrosis (by 13 and 19%, respectively). In conclusion, these findings suggest that EET analog EET-B has beneficial therapeutic actions to reduce cardiac remodeling in SHR subjected to MI.


Asunto(s)
Ácidos Araquidónicos/administración & dosificación , Infarto del Miocardio/tratamiento farmacológico , Animales , Ácidos Araquidónicos/química , Presión Sanguínea , Modelos Animales de Enfermedad , Corazón/fisiopatología , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Humanos , Masculino , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Ratas , Ratas Endogámicas SHR
6.
Mol Cell Biochem ; 461(1-2): 15-22, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31300984

RESUMEN

Adaptation to chronic hypoxia renders the heart more tolerant to ischemia/reperfusion injury. To evaluate changes in gene expression after adaptation to chronic hypoxia by RT-qPCR, it is essential to select suitable reference genes. In a chronically hypoxic rat model, no specific reference genes have been identified in the myocardium. This study aimed to select the best reference genes in the left (LV) and right (RV) ventricles of chronically hypoxic and normoxic rats. Sprague-Dawley rats were adapted to continuous normobaric hypoxia (CNH; 12% O2 or 10% O2) for 3 weeks. The expression levels of candidate genes were assessed by RT-qPCR. The stability of genes was evaluated by NormFinder, geNorm and BestKeeper algorithms. The best five reference genes in the LV were Top1, Nupl2, Rplp1, Ywhaz, Hprt1 for the milder CNH and Top1, Ywhaz, Sdha, Nupl2, Tomm22 for the stronger CNH. In the RV, the top five genes were Hprt1, Nupl2, Gapdh, Top1, Rplp1 for the milder CNH and Tomm22, Gapdh, Hprt1, Nupl2, Top1 for the stronger CNH. This study provides validation of reference genes in LV and RV of CNH rats and shows that suitable reference genes differ in the two ventricles and depend on experimental protocol.


Asunto(s)
Regulación de la Expresión Génica , Hipoxia/genética , Miocardio/metabolismo , Miocardio/patología , Animales , Enfermedad Crónica , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Masculino , Ratas Sprague-Dawley , Estándares de Referencia
7.
Physiol Genomics ; 50(7): 532-541, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29676955

RESUMEN

Recently we have shown that adaptation to continuous normobaric hypoxia (CNH) decreases myocardial ischemia/reperfusion injury in spontaneously hypertensive rats (SHR) and in a conplastic strain (SHR-mtBN). The protective effect was stronger in the latter group characterized by a selective replacement of the SHR mitochondrial genome with that of a more ischemia-resistant Brown Norway strain. The aim of the present study was to examine the possible involvement of the hypoxia inducible factor (HIF)-dependent pathway of the protein kinase B/glucose transporters/hexokinase (Akt/GLUT/HK) in this mitochondrial genome-related difference of the cardioprotective phenotype. Adult male rats were exposed for 3 wk to CNH ([Formula: see text] 0.1). The expression of dominant isoforms of Akt, GLUT, and HK in left ventricular myocardium was determined by real-time RT-PCR and Western blotting. Subcellular localization of GLUTs was assessed by quantitative immunofluorescence. Whereas adaptation to hypoxia markedly upregulated protein expression of HK2, GLUT1, and GLUT4 in both rat strains, Akt2 protein level was significantly increased in SHR-mtBN only. Interestingly, a higher content of HK2 was revealed in the sarcoplasmic reticulum-enriched fraction in SHR-mtBN after CNH. The increased activity of HK determined in the mitochondrial fraction after CNH in both strains suggested an increase of HK association with mitochondria. Interestingly, HIF1a mRNA increased and HIF2a mRNA decreased after CNH, the former effect being more pronounced in SHR-mtBN than in SHR. Pleiotropic effects of upregulated Akt2 along with HK translocation to mitochondria and mitochondria-associated membranes can potentially contribute to a stronger CNH-afforded cardioprotection in SHR-mtBN compared with progenitor SHR.


Asunto(s)
Genoma Mitocondrial/genética , Hipoxia , Mitocondrias Cardíacas/genética , Miocardio/metabolismo , Transducción de Señal/genética , Adaptación Fisiológica/genética , Animales , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Hexoquinasa/genética , Hexoquinasa/metabolismo , Hipertensión/genética , Factor 1 Inducible por Hipoxia/genética , Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Mitocondrias Cardíacas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Endogámicas BN , Ratas Endogámicas SHR , Especificidad de la Especie
8.
Am J Physiol Heart Circ Physiol ; 315(5): H1148-H1158, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30074840

RESUMEN

Epoxyeicosatrienoic acids (EETs) decrease cardiac ischemia-reperfusion injury; however, the mechanism of their protective effect remains elusive. Here, we investigated the cardioprotective action of a novel EET analog, EET-B, in reperfusion and the role of hypoxia-inducible factor (HIF)-1α in such action of EET-B. Adult male rats were subjected to 30 min of left coronary artery occlusion followed by 2 h of reperfusion. Administration of 14,15-EET (2.5 mg/kg) or EET-B (2.5 mg/kg) 5 min before reperfusion reduced infarct size expressed as a percentage of the area at risk from 64.3 ± 1.3% in control to 42.6 ± 1.9% and 46.0 ± 1.6%, respectively, and their coadministration did not provide any stronger effect. The 14,15-EET antagonist 14,15-epoxyeicosa-5( Z)-enoic acid (2.5 mg/kg) inhibited the infarct size-limiting effect of EET-B (62.5 ± 1.1%). Similarly, the HIF-1α inhibitors 2-methoxyestradiol (2.5 mg/kg) and acriflavine (2 mg/kg) completely abolished the cardioprotective effect of EET-B. In a separate set of experiments, the immunoreactivity of HIF-1α and its degrading enzyme prolyl hydroxylase domain protein 3 (PHD3) were analyzed in the ischemic areas and nonischemic septa. At the end of ischemia, the HIF-1α immunogenic signal markedly increased in the ischemic area compared with the septum (10.31 ± 0.78% vs. 0.34 ± 0.08%). After 20 min and 2 h of reperfusion, HIF-1α immunoreactivity decreased to 2.40 ± 0.48% and 1.85 ± 0.43%, respectively, in the controls. EET-B blunted the decrease of HIF-1α immunoreactivity (7.80 ± 0.69% and 6.44 ± 1.37%, respectively) and significantly reduced PHD3 immunogenic signal in ischemic tissue after reperfusion. In conclusion, EET-B provides an infarct size-limiting effect at reperfusion that is mediated by HIF-1α and downregulation of its degrading enzyme PHD3. NEW & NOTEWORTHY The present study shows that EET-B is an effective agonistic 14,15-epoxyeicosatrienoic acid analog, and its administration before reperfusion markedly reduced myocardial infarction in rats. Most importantly, we demonstrate that increased hypoxia-inducible factor-1α levels play a role in cardioprotection mediated by EET-B in reperfusion likely by mechanisms including downregulation of the hypoxia-inducible factor -1α-degrading enzyme prolyl hydroxylase domain protein 3.


Asunto(s)
Ácido 8,11,14-Eicosatrienoico/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/enzimología , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/uso terapéutico , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Masculino , Infarto del Miocardio/enzimología , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/patología , Proteolisis , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
9.
Clin Sci (Lond) ; 131(9): 865-881, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28292971

RESUMEN

Mitochondria play an essential role in improved cardiac ischaemic tolerance conferred by adaptation to chronic hypoxia. In the present study, we analysed the effects of continuous normobaric hypoxia (CNH) on mitochondrial functions, including the sensitivity of the mitochondrial permeability transition pore (MPTP) to opening, and infarct size (IS) in hearts of spontaneously hypertensive rats (SHR) and the conplastic SHR-mtBN strain, characterized by the selective replacement of the mitochondrial genome of SHR with that of the more ischaemia-resistant brown Norway (BN) strain. Rats were adapted to CNH (10% O2, 3 weeks) or kept at room air as normoxic controls. In the left ventricular mitochondria, respiration and cytochrome c oxidase (COX) activity were measured using an Oxygraph-2k and the sensitivity of MPTP opening was assessed spectrophotometrically as Ca2+-induced swelling. Myocardial infarction was analysed in anaesthetized open-chest rats subjected to 20 min of coronary artery occlusion and 3 h of reperfusion. The IS reached 68±3.0% and 65±5% of the area at risk in normoxic SHR and SHR-mtBN strains, respectively. CNH significantly decreased myocardial infarction to 46±3% in SHR. In hypoxic SHR-mtBN strain, IS reached 33±2% and was significantly smaller compared with hypoxic SHR. Mitochondria isolated from hypoxic hearts of both strains had increased detergent-stimulated COX activity and were less sensitive to MPTP opening. The maximum swelling rate was significantly lower in hypoxic SHR-mtBN strain compared with hypoxic SHR, and positively correlated with myocardial infarction in all experimental groups. In conclusion, the mitochondrial genome of SHR modulates the IS-limiting effect of adaptation to CNH by affecting mitochondrial energetics and MPTP sensitivity to opening.


Asunto(s)
ADN Mitocondrial/genética , Hipoxia , Mitocondrias Cardíacas/genética , Animales , Western Blotting , Enfermedad Crónica , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Genoma Mitocondrial/genética , Masculino , Mitocondrias Cardíacas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/fisiopatología , Ratas , Ratas Endogámicas BN , Ratas Endogámicas SHR , Ratas Transgénicas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
Mol Cell Biochem ; 432(1-2): 99-108, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28290047

RESUMEN

Adaptation to chronic hypoxia represents a potential cardioprotective intervention reducing the extent of acute ischemia/reperfusion (I/R) injury, which is a major cause of death worldwide. The main objective of this study was to investigate the anti-apoptotic Akt/hexokinase 2 (HK2) pathway in hypoxic hearts subjected to I/R insult. Hearts isolated from male Wistar rats exposed either to continuous normobaric hypoxia (CNH; 10% O2) or to room air for 3 weeks were perfused according to Langendorff and subjected to 10 min of no-flow ischemia and 10 min of reperfusion. The hearts were collected either after ischemia or after reperfusion and used for protein analyses and quantitative fluorescence microscopy. The CNH resulted in increased levels of HK1 and HK2 proteins and the total HK activity after ischemia compared to corresponding normoxic group. Similarly, CNH hearts exhibited increased ischemic level of Akt protein phosphorylated on Ser473. The CNH also strengthened the interaction of HK2 with mitochondria and prevented downregulation of mitochondrial creatine kinase after reperfusion. The Bax/Bcl-2 ratio was significantly lower after I/R in CNH hearts than in normoxic ones, suggesting a lower probability of apoptosis. In conclusion, the Akt/HK2 pathway is likely to play a role in the development of a cardioprotective phenotype of CNH by preventing the detachment of HK2 from mitochondria at reperfusion period and decreases the Bax/Bcl-2 ratio during I/R insult, thereby lowering the probability of apoptosis activation in the mitochondrial compartment.


Asunto(s)
Hexoquinasa/metabolismo , Mitocondrias Cardíacas/enzimología , Daño por Reperfusión Miocárdica/enzimología , Miocardio/enzimología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Masculino , Mitocondrias Cardíacas/patología , Daño por Reperfusión Miocárdica/patología , Miocardio/patología , Ratas , Ratas Wistar
11.
Can J Physiol Pharmacol ; 95(8): 920-927, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28459156

RESUMEN

Adaptation to chronic intermittent hypoxia (CIH) is associated with reactive oxygen species (ROS) generation implicated in the improved cardiac tolerance against acute ischemia-reperfusion injury. Phospholipases A2 (PLA2s) play an important role in cardiomyocyte phospholipid metabolism influencing membrane homeostasis. Here we aimed to determine the effect of CIH (7000 m, 8 h/day, 5 weeks) on the expression of cytosolic PLA2 (cPLA2α), its phosphorylated form (p-cPLA2α), calcium-independent (iPLA2), and secretory (sPLA2IIA) at protein and mRNA levels, as well as fatty acids (FA) profile in left ventricular myocardium of adult male Wistar rats. Chronic administration of antioxidant tempol was used to verify the ROS involvement in CIH effect on PLA2s expression and phospholipid FA remodeling. While CIH did not affect PLA2s mRNA levels, it increased the total cPLA2α protein in cytosol and membranes (by 191% and 38%, respectively) and p-cPLA2α (by 23%) in membranes. On the contrary, both iPLA2 and sPLA2IIA were downregulated by CIH. CIH further decreased phospholipid n-6 polyunsaturated FA (PUFA) and increased n-3 PUFA proportion. Tempol treatment prevented only CIH-induced cPLA2α up-regulation and its phosphorylation on Ser505. Our results show that CIH diversely affect myocardial PLA2s and suggest that ROS are responsible for the activation of cPLA2α under these conditions.


Asunto(s)
Antioxidantes/farmacología , Óxidos N-Cíclicos/farmacología , Fosfolipasas A2 Grupo IV/metabolismo , Hipoxia/enzimología , Animales , Enfermedad Crónica , Ácidos Grasos/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Fosfolipasas A2 Grupo IV/genética , Hipoxia/metabolismo , Masculino , Fosforilación/efectos de los fármacos , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Marcadores de Spin
12.
Can J Physiol Pharmacol ; 95(10): 1163-1169, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28472590

RESUMEN

Long-lasting ischemia can result in cell loss; however, repeated episodes of brief ischemia increase the resistance of the heart against deleterious effects of subsequent prolonged ischemic insult and promote cell survival. Traditionally, it is believed that the supply of blood to the ischemic heart is associated with release of cytokines, activation of inflammatory response, and induction of necrotic cell death. In the past few years, this paradigm of passive necrosis as an uncontrolled cell death has been re-examined and the existence of a strictly regulated form of necrotic cell death, necroptosis, has been documented. This controlled cell death modality, resembling all morphological features of necrosis, has been investigated in different types of ischemia-associated heart injuries. The process of necroptosis has been found to be dependent on the activation of RIP1-RIP3-MLKL axis, which induces changes leading to the rupture of cell membrane. This pathway is activated by TNF-α, which has also been implicated in the cardioprotective signaling pathway of ischemic preconditioning. Thus, this review is intended to describe the TNF-α-mediated signaling leading to either cell survival or necroptotic cell death. In addition, some experimental data suggesting a link between heart dysfunction and the cellular loss due to necroptosis are discussed in various conditions of myocardial ischemia.


Asunto(s)
Apoptosis , Isquemia Miocárdica/patología , Miocardio/metabolismo , Animales , Apoptosis/efectos de los fármacos , Humanos , Isquemia Miocárdica/metabolismo , Miocardio/patología , Necrosis , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
13.
Mol Cell Biochem ; 423(1-2): 151-163, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27686454

RESUMEN

Cardiac resistance against acute ischemia/reperfusion (I/R) injury can be enhanced by adaptation to chronic intermittent hypoxia (CIH), but the changes at the molecular level associated with this adaptation are still not fully explored. Phospholipase A2 (PLA2) plays an important role in phospholipid metabolism and may contribute to membrane destruction under conditions of energy deprivation during I/R. The aim of this study was to determine the effect of CIH (7000 m, 8 h/day, 5 weeks) on the expression of cytosolic PLA2α (cPLA2α) and its phosphorylated form (p-cPLA2α), as well as other related signaling proteins in the left ventricular myocardium of adult male Wistar rats. Adaptation to CIH increased the total content of cPLA2α by 14 % in myocardial homogenate, and enhanced the association of p-cPLA2α with the nuclear membrane by 85 %. The total number of ß-adrenoceptors (ß-ARs) did not change but the ß2/ß1 ratio markedly increased due to the elevation of ß2-ARs and drop in ß1-ARs. In parallel, the amount of adenylyl cyclase decreased by 49 % and Giα proteins increased by about 50 %. Besides that, cyclooxygenase 2 (COX-2) and prostaglandin E2 (PGE2) increased by 36 and 84 %, respectively. In parallel, we detected increased phosphorylation of protein kinase Cα, ERK1/2 and p38 (by 12, 48 and 19 %, respectively). These data suggest that adaptive changes induced in the myocardium by CIH may include activation of cPLA2α and COX-2 via ß2-AR/Gi-mediated stimulation of the ERK/p38 pathway.


Asunto(s)
Ciclooxigenasa 2/metabolismo , Fosfolipasas A2 Grupo IV/metabolismo , Sistema de Señalización de MAP Quinasas , Isquemia Miocárdica/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Enfermedad Crónica , Masculino , Isquemia Miocárdica/patología , Ratas , Ratas Wistar
14.
Gen Physiol Biophys ; 35(2): 165-73, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26891273

RESUMEN

Chronic hypoxia may produce a cardioprotective phenotype characterized by increased resistance to ischemia-reperfusion injury. Nevertheless, the molecular basis of cardioprotective effects of hypoxia is still not quite clear. The present study investigated the consequences of a 3-week adaptation to cardioprotective (CNH, continuous normobaric hypoxia) and nonprotective (INH, intermittent normobaric hypoxia; 23 h/day hypoxia followed by 1 h/day reoxygenation) regimen of hypoxia on ß-adrenergic signaling in the rat myocardium. Both regimens of hypoxia lowered body weight and led to marked right ventricular (RV) hypertrophy, which was accompanied by 25% loss of ß1-adrenergic receptors (ß1-ARs) in the RV. No significant changes were found in ß-ARs in left ventricular (LV) preparations from animals adapted to hypoxia. Although adenylyl cyclase (AC) activity stimulated through the G proteins was decreased in the RV and increased in the LV after exposure to hypoxia, there were no significant changes in the expression of the dominant myocardial AC 5/6 isoforms and the stimulatory G proteins. These data suggest that chronic normobaric hypoxia may strongly affect myocardial ß-adrenergic signaling but adaptation to cardioprotective and nonprotective regimens of hypoxia does not cause notably diverse changes.


Asunto(s)
Adaptación Fisiológica , Hipoxia/fisiopatología , Miocardio/metabolismo , Oxígeno/metabolismo , Receptores Adrenérgicos beta/metabolismo , Transducción de Señal , Animales , Masculino , Ratas , Ratas Wistar
15.
Physiol Genomics ; 47(12): 612-20, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26465708

RESUMEN

It has been documented that adaptation to hypoxia increases myocardial tolerance to ischemia-reperfusion (I/R) injury depending on the regimen of adaptation. Reactive oxygen species (ROS) formed during hypoxia play an important role in the induction of protective cardiac phenotype. On the other hand, the excess of ROS can contribute to tissue damage caused by I/R. Here we investigated the relationship between myocardial tolerance to I/R injury and transcription activity of major antioxidant genes, transcription factors, and oxidative stress in three different regimens of chronic hypoxia. Adult male Wistar rats were exposed to continuous normobaric hypoxia (FiO2 0.1) either continuously (CNH) or intermittently for 8 h/day (INH8) or 23 h/day (INH23) for 3 wk period. A control group was kept in room air. Myocardial infarct size was assessed in anesthetized open-chest animals subjected to 20 min coronary artery occlusion and 3 h reperfusion. Levels of mRNA transcripts and the ratio of reduced and oxidized glutathione (GSH/GSSG) were analyzed by real-time RT-PCR and by liquid chromatography, respectively. Whereas CNH as well as INH8 decreased infarct size, 1 h daily reoxygenation (INH23) abolished the cardioprotective effect and decreased GSH/GSSG ratio. The majority of mRNAs of antioxidant genes related to mitochondrial antioxidant defense (manganese superoxide dismutase, glutathione reductase, thioredoxin/thioredoxin reductase, and peroxiredoxin 2) were upregulated in both cardioprotective regimens (CNH, INH8). In contrast, INH23 increased only PRX5, which was not sufficient to induce the cardioprotective phenotype. Our results suggest that the increased mitochondrial antioxidant defense plays an important role in cardioprotection afforded by chronic hypoxia.


Asunto(s)
Antioxidantes/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo , Animales , Cromatografía Liquida , Glutatión Reductasa/genética , Hipoxia/metabolismo , Masculino , Estrés Oxidativo/fisiología , Peroxirredoxinas/genética , Ratas , Superóxido Dismutasa/genética
16.
Physiol Genomics ; 46(18): 671-8, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25073601

RESUMEN

Common inbred strains of the laboratory rat can be divided into four major mitochondrial DNA (mtDNA) haplotype groups represented by the BN, F344, LEW, and SHR strains. In the current study, we investigated the metabolic and hemodynamic effects of the SHR vs. F344 mtDNA by comparing the SHR vs. SHR-mt(F344) conplastic strains that are genetically identical except for their mitochondrial genomes. Altogether 13 amino acid substitutions in protein coding genes, seven single nucleotide polymorphisms in tRNA genes, and 12 single nucleotide changes in rRNA genes were detected in F344 mtDNA compared with SHR mtDNA. Analysis of oxidative phosphorylation system (OXPHOS) in heart left ventricles (LV), muscle, and liver revealed reduced activity and content of several respiratory chain complexes in SHR-mt(F344) conplastic rats compared with the SHR strain. Lower function of OXPHOS in LV of conplastic rats was associated with significantly increased relative ventricular mass and reduced fractional shortening that was independent of blood pressure. In addition, conplastic rats exhibited reduced sensitivity of skeletal muscles to insulin action and impaired glucose tolerance. These results provide evidence that inherited alterations in mitochondrial genome, in the absence of variation in the nuclear genome and other confounding factors, predispose to insulin resistance, cardiac hypertrophy and systolic dysfunction.


Asunto(s)
Cardiomegalia/genética , Cardiomegalia/fisiopatología , ADN Mitocondrial/genética , Resistencia a la Insulina/genética , Fosforilación Oxidativa , Sístole , Nucleótidos de Adenina/metabolismo , Animales , Secuencia de Bases , Presión Sanguínea/efectos de los fármacos , Electrocardiografía , Transporte de Electrón/efectos de los fármacos , Dosificación de Gen , Genes Mitocondriales , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Haplotipos/genética , Insulina/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Datos de Secuencia Molecular , Tamaño de los Órganos/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , Fenotipo , ARN de Transferencia/genética , Ratas Endogámicas F344 , Ratas Endogámicas SHR , Análisis de Secuencia de ADN , Sístole/efectos de los fármacos , Función Ventricular Izquierda/efectos de los fármacos
17.
Cell Physiol Biochem ; 33(2): 310-20, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24525799

RESUMEN

BACKGROUND: Creatine kinase (CK) and hexokinase (HK) play a key role in myocardial energy homeostasis. We aimed to determine CK and HK expression and enzyme activity in the left (LV) and right (RV) ventricles of rats adapted for 3 weeks to normobaric hypoxia (10 % O2) either continuously (CNH) or intermittently with 1-h or 16-h normoxic episode per day. METHODS: The Real-Time RT-PCR, Western blot, and enzyme-coupled assays were used. In addition, the effect of CNH on the HK co-localization with mitochondria, which can inhibit apoptosis, was assessed using immunofluorescence techniques. RESULTS: CK and HK activities increased in the LV during all hypoxic adaptations, which was consistent with elevated protein levels of mitochondrial mtCKs, cytosolic CKB, HK1, and HK2 isoforms. Enzyme activities also increased in the hypoxic RV, but only CKB protein was elevated. No effect of CNH on HK1 or HK2 co-localization with mitochondria was observed. CONCLUSION: Up-regulation of mtCKs and HK isoforms may stimulate the respiratory chain and help to maintain energy homeostasis of chronically hypoxic myocardium and prevent oxidative stress. In this way, CK and HK enzymes can possibly participate in the establishment of ischemia-resistant phenotype of chronically hypoxic hearts.


Asunto(s)
Creatina Quinasa/biosíntesis , Regulación Enzimológica de la Expresión Génica , Ventrículos Cardíacos/enzimología , Hexoquinasa/biosíntesis , Hipoxia/enzimología , Mitocondrias Cardíacas/enzimología , Proteínas Mitocondriales/biosíntesis , Miocardio/enzimología , Animales , Enfermedad Crónica , Metabolismo Energético , Ventrículos Cardíacos/patología , Hipoxia/patología , Masculino , Mitocondrias Cardíacas/patología , Miocardio/patología , Ratas , Ratas Wistar
18.
Clin Sci (Lond) ; 127(7): 463-74, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24707975

RESUMEN

Epoxyeicosatrienoic acids (EETs) contribute to haemodynamics, electrolyte homoeostasis and blood pressure regulation, leading to the concept that EETs can be therapeutically targeted for hypertension. In the present study, multiple structural EET analogues were synthesized based on the EET pharmacophore and vasodilator structure-activity studies. Four EET analogues with 91-119% vasodilatory activity in the isolated bovine coronary artery (EC50: 0.18-1.6 µM) were identified and studied for blood-pressure-lowering in hypertension. Two EET analogues in which the COOH group at carbon 1 of the EET pharmacophore was replaced with either an aspartic acid (EET-A) or a heterocyclic surrogate (EET-X) were administered for 14 days [10 mg/kg per day intraperitoneally (i.p.)]. Both EET-A and EET-X lowered blood pressure in spontaneously hypertensive rats (SHRs) and in angiotensin II (AngII) hypertension. On day 14, the mean arterial pressures in EET analogue-treated AngII-hypertensive and SHRs were 30-50 mmHg (EET-A) and 15-20 mmHg (EET-X) lower than those in vehicle-treated controls. These EET analogues (10 mg/kg per day) were further tested in AngII hypertension by administering orally in drinking water for 14 days and EET-A lowered blood pressure. Additional experiments demonstrated that EET-A inhibits epithelial sodium channel (ENaC) activity in cultured cortical collecting duct cells and reduced renal expression of ENaC subunits in AngII hypertension. In conclusion, we have characterized EET-A as an orally active antihypertensive EET analogue that protects vascular endothelial function and has ENaC inhibitory activity in AngII hypertension.


Asunto(s)
Antihipertensivos/farmacología , Presión Sanguínea/efectos de los fármacos , Hipertensión/tratamiento farmacológico , Bloqueadores de los Canales de Sodio/farmacología , Vasodilatación/efectos de los fármacos , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/química , Ácido 8,11,14-Eicosatrienoico/farmacología , Animales , Antihipertensivos/química , Hemodinámica , Hipertensión/genética , Hipertensión/metabolismo , Masculino , Ratones , Ratas , Ratas Endogámicas SHR , Ratas Sprague-Dawley , Bloqueadores de los Canales de Sodio/química
19.
Cardiovasc Drugs Ther ; 28(4): 313-22, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24842561

RESUMEN

PURPOSE: Angiotensin II type 1 receptor blockers (ARBs) are widely used in treating hypertension. In the present study, we tested the hypothesis that a novel ARB, azilsartan medoxomil (AZL-M) will prevent renal and cardiovascular injury in the spontaneously hypertensive obese rat (SHROB), a model of cardiometabolic syndrome. METHODS: Male SHROB were treated with vehicle or AZL-M orally for 56 days. Vehicle treated normotensive Wistar-Kyoto (WKY) rats served as controls. The effects of AZL-M on kidney injury, vascular endothelial and heart functions, lipid profile, and glucose tolerance were assessed. RESULTS: AZL-M demonstrated anti-hypertensive effects along with markedly improved vascular endothelial function in SHROB. In these rats, AZL-M demonstrates strong kidney protective effects with lower albuminuria and nephrinuria along with reduced tubular cast formation and glomerular injury. AZL-M treatment also improved left ventricular heart function, attenuated development of left ventricular hypertrophy, and reduced cardiac fibrosis in SHROB. CONCLUSION: Overall, these findings demonstrate kidney and heart protective effects of AZL-M in SHROB, and these effects were associated with its ability to lower blood pressure and improve endothelial function.


Asunto(s)
Antihipertensivos/uso terapéutico , Bencimidazoles/uso terapéutico , Hipertensión/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Oxadiazoles/uso terapéutico , Sustancias Protectoras/uso terapéutico , Animales , Antihipertensivos/farmacología , Bencimidazoles/farmacología , Glucemia/análisis , Peso Corporal/efectos de los fármacos , Colesterol/sangre , Modelos Animales de Enfermedad , Corazón/efectos de los fármacos , Hipertensión/sangre , Hipertensión/patología , Hipertrofia Ventricular Izquierda/sangre , Hipertrofia Ventricular Izquierda/tratamiento farmacológico , Hipertrofia Ventricular Izquierda/patología , Técnicas In Vitro , Insulina/sangre , Riñón/efectos de los fármacos , Riñón/patología , Masculino , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/fisiología , Miocardio/patología , Obesidad/sangre , Obesidad/patología , Oxadiazoles/farmacología , Sustancias Protectoras/farmacología , Ratas Endogámicas WKY , Triglicéridos/sangre , Vasodilatación/efectos de los fármacos
20.
BMC Endocr Disord ; 14: 11, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24502509

RESUMEN

BACKGROUND: Diabetic cardiomyopathy is associated with a number of functional and structural pathological changes such as left ventricular dysfunction, cardiac remodeling, and apoptosis. The primary cause of diabetic cardiomyopathy is hyperglycemia, the metabolic hallmark of diabetes. Recent studies have shown that a diabetic environment suppresses hypoxia-inducible factor (HIF)-1α protein stability and function. The aim of this study was to analyze the functional role of HIF-1α in the development of diabetic cardiomyopathy. We have hypothesized that the partial deficiency of HIF-1α may compromise cardiac responses under diabetic conditions and increase susceptibility to diabetic cardiomyopathy. METHODS: Diabetes was induced by streptozotocin in wild type (Wt) and heterozygous Hif1a knock-out (Hif1a+/-) mice. Echocardiographic evaluations of left ventricular functional parameters, expression analyses by qPCR and Western blot, and cardiac histopathology assessments were performed in age-matched groups, diabetic, and non-diabetic Wt and Hif1a+/- mice. RESULTS: Five weeks after diabetes was established, a significant decrease in left ventricle fractional shortening was detected in diabetic Hif1a+/- but not in diabetic Wt mice. The combination effects of the partial deficiency of Hif1a and diabetes affected the gene expression profile of the heart, including reduced vascular endothelial growth factor A (Vegfa) expression. Adverse cardiac remodeling in the diabetic Hif1a+/- heart was shown by molecular changes in the expression of structural molecules and components of the extracellular matrix. CONCLUSIONS: We have shown a correlation between heterozygosity for Hif1α and adverse functional, molecular, and cellular changes associated with diabetic cardiomyopathy. Our results provide evidence that HIF-1α regulates early cardiac responses to diabetes, and that HIF-1α deregulation may influence the increased risk for diabetic cardiomyopathy.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda