Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Colloids Surf B Biointerfaces ; 165: 28-36, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29448217

RESUMEN

Herein, we report a novel concept of low-cost flexible platform for fluorescence-based biosensor. The surface of polyethylene naphthalate (PEN) foil was exposed to KrF excimer laser through a photolitographic contact mask. Laser initiated surface modification resulted in micro-patterned areas with surface functional groups available for localized covalent immobilization of biotin. High affinity binding protein (albumin-binding domain (ABD) of protein G, Streptococcus G148) recognizing human serum albumin (HSA), genetically fused with streptavidin (SA-ABDwt), was immobilized on the micro-patterned surface through biotin-streptavidin coupling. Fluorescently labelled HSA analyte was detected in several blocking environments, in 1% bovine serum albumin (BSA) and 6% fetal serum albumin (FBS), respectively. We conclude that the presented novel concept enabled us to micropattern functional biosensing layers on the surface of PEN foil in a fast and easy way. It brings all necessary aspects for continuous roll-to-roll fabrication of low-cost optical bioanalytical devices.


Asunto(s)
Microtecnología/métodos , Naftalenos/química , Fenómenos Ópticos , Polietilenos/química , Biotina/metabolismo , Humanos , Espectroscopía de Fotoelectrones , Albúmina Sérica/metabolismo , Estreptavidina/metabolismo , Propiedades de Superficie
2.
Materials (Basel) ; 10(10)2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28934132

RESUMEN

While polymers are widely utilized materials in the biomedical industry, they are rarely used in an unmodified state. Some kind of a surface treatment is often necessary to achieve properties suitable for specific applications. There are multiple methods of surface treatment, each with their own pros and cons, such as plasma and laser treatment, UV lamp modification, etching, grafting, metallization, ion sputtering and others. An appropriate treatment can change the physico-chemical properties of the surface of a polymer in a way that makes it attractive for a variety of biological compounds, or, on the contrary, makes the polymer exhibit antibacterial or cytotoxic properties, thus making the polymer usable in a variety of biomedical applications. This review examines four popular methods of polymer surface modification: laser treatment, ion implantation, plasma treatment and nanoparticle grafting. Surface treatment-induced changes of the physico-chemical properties, morphology, chemical composition and biocompatibility of a variety of polymer substrates are studied. Relevant biological methods are used to determine the influence of various surface treatments and grafting processes on the biocompatibility of the new surfaces-mammalian cell adhesion and proliferation is studied as well as other potential applications of the surface-treated polymer substrates in the biomedical industry.

3.
Colloids Surf B Biointerfaces ; 128: 363-369, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25771440

RESUMEN

Polymers with functionalized surfaces have attracted a lot of attention in the last few years. Due to the progress in the techniques of polymer micro-patterning, miniaturized bioanalytical assays and biocompatible devices can be developed. In the presented work, we performed surface modification of polyethylene naphthalate (PEN) foil by an excimer laser beam through a photolithographic contact mask. The aim was to fabricate micro-patterned areas with surface functional groups available for localized covalent immobilization of biotin. It was found out that depending on the properties of the laser scans, a polymer surface exhibits different degrees of modification and as a consequence, different degrees of surface biotinylation can be achieved. Several affinity tests with optical detection of fluorescently labeled streptavidin were successfully performed on biotinylated micro-patterns of a PEN foil. The polymer surface properties were also evaluated by electrokinetic analysis, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The results have shown that PEN foils can be considered suitable substrates for construction of micro-patterned bioanalytical affinity assays.


Asunto(s)
Biotina/química , Naftalenos/química , Polietilenos/química , Estreptavidina/química , Biotinilación , Dispositivos Laboratorio en un Chip , Láseres de Excímeros , Microtecnología , Naftalenos/efectos de la radiación , Procesos Fotoquímicos , Polietilenos/efectos de la radiación , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda