Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Chemistry ; 27(9): 3008-3012, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33283953

RESUMEN

Ajoene is a compound found in garlic extracts exhibiting a large range of biological activity. Novel ajoene analogues have been prepared in the search of compounds with superior bioactivity. Modifications include the alteration of the sulfoxide, the central alkene and the terminal allyl groups.

2.
Chemistry ; 26(38): 8363-8367, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32364668

RESUMEN

A short total synthesis of ajoene, (E,Z)-4,5,9-trithiadodeca-1,6,11-triene 9-oxide, has been achieved over six steps. In addition, a continuous flow synthesis under mild reaction conditions to (E,Z)-4,5,9-trithiadodeca-1,7,11-triene is described starting from simple and easily accessible starting materials. Over four steps including propargylation, radical addition of thioacetate, deprotection, and disulfide formation/ allylation, the target product can be obtained at a rate of 0.26 g h-1 in an overall yield of 12 %.

3.
PLoS Biol ; 8(1): e1000291, 2010 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-20098725

RESUMEN

Neurodegenerative diseases such as Huntington disease are devastating disorders with no therapeutic approaches to ameliorate the underlying protein misfolding defect inherent to poly-glutamine (polyQ) proteins. Given the mounting evidence that elevated levels of protein chaperones suppress polyQ protein misfolding, the master regulator of protein chaperone gene transcription, HSF1, is an attractive target for small molecule intervention. We describe a humanized yeast-based high-throughput screen to identify small molecule activators of human HSF1. This screen is insensitive to previously characterized activators of the heat shock response that have undesirable proteotoxic activity or that inhibit Hsp90, the central chaperone for cellular signaling and proliferation. A molecule identified in this screen, HSF1A, is structurally distinct from other characterized small molecule human HSF1 activators, activates HSF1 in mammalian and fly cells, elevates protein chaperone expression, ameliorates protein misfolding and cell death in polyQ-expressing neuronal precursor cells and protects against cytotoxicity in a fly model of polyQ-mediated neurodegeneration. In addition, we show that HSF1A interacts with components of the TRiC/CCT complex, suggesting a potentially novel regulatory role for this complex in modulating HSF1 activity. These studies describe a novel approach for the identification of new classes of pharmacological interventions for protein misfolding that underlies devastating neurodegenerative disease.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Enfermedades Neurodegenerativas/genética , Pliegue de Proteína , Factores de Transcripción/metabolismo , Animales , Núcleo Celular/metabolismo , Células Cultivadas , Proteínas de Unión al ADN/análisis , Drosophila/genética , Drosophila/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Factores de Transcripción del Choque Térmico , Humanos , Ratones , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Fosforilación , Saccharomyces cerevisiae/genética , Factores de Transcripción/análisis
4.
Mol Microbiol ; 73(6): 1032-42, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19682251

RESUMEN

In mammalian and Drosophila cells, heat stress strongly reduces general protein translation while activating cap-independent translation mechanisms to promote the expression of stress-response proteins. In contrast, in Saccharomyces cerevisiae general translation is only mildly and transiently reduced by heat stress and cap-independent translation mechanisms have not been correlated with the heat stress response. Recently we have identified direct target genes of the heat shock transcription factor (HSF), including genes encoding proteins thought to be important for general translation. One gene activated by HSF during heat stress encodes the enhancer of decapping protein, Edc2, previously shown to enhance mRNA decapping under conditions when the decapping machinery is limited. In this report we show that strains lacking Edc2, as well as the paralogous protein Edc1, are compromised for growth under persistent heat stress. This growth deficiency can be rescued by expression of a mutant Edc1 protein deficient in mRNA decapping indicative of a decapping independent function during heat stress. Yeast strains lacking Edc1 and Edc2 are also sensitive to the pharmacological inhibitor of translation paromomycin and exposure to heat stress and paromomycin functions synergistically to reduce yeast viability, suggesting that in the absence of Edc1 and Edc2 translation is compromised under heat stress conditions. Strains lacking Edc1 and Edc2 have significantly reduced rates of protein translation during growth under heat stress conditions, but not under normal growth conditions. We propose that Edc1 and the stress responsive isoform Edc2 play important roles in protein translation during stress.


Asunto(s)
Calor , Biosíntesis de Proteínas , Proteínas de Unión al ARN/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/efectos de la radiación , Estrés Fisiológico , Antifúngicos/farmacología , Técnicas de Inactivación de Genes , Paromomicina/farmacología , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética
5.
Probiotics Antimicrob Proteins ; 12(3): 1097-1114, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31828607

RESUMEN

In this study, we describe enhanced in vitro probiotic activities of preformed biofilms versus planktonic cultures of Lactobacillus fermentum LfQi6 (LfQi6), a lactic acid bacterium (LAB) isolated from the human microbiome. These evaluations are used to help predict host in vivo probiotic benefits and therefore indicate that LfQi6 may provide significant probiotic benefits in the human host when administered as preformed biofilms rather than as planktonic cultures. Specifically, LfQi6 biofilms demonstrated improved in vitro performance versus LfQi6 planktonic cultures for host gastrointestinal survival and engraftment, strain-specific antimicrobial and anti-biofilm activity against clinically significant pathogens, concurrent promotion of beneficial gastrointestinal commensal biofilms, beneficial commensal enzyme activities, and host cellular-protective glutathione antioxidant activity. Evaluation of LfQi6 according to the European Food Safety Authority (EFSA 2007, 2012, 2015) Guidelines and Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food Evaluation of Probiotics in Food (FAO/WHO, 2002) demonstrates strain safety. In summary, in vitro evaluation of Lact. fermentum LfQi6 demonstrates significant evidence for strain-specific probiotic characteristics and safety. Moreover, strain-specific as well as biofilm-phenotype-specific benefits demonstrated in vitro furthermore suggest that in vivo use of LfQi6 biofilm biomass may be of greater benefit to the human host than the use of standard planktonic cultures. This concept - potentiating probiotic benefits through the use of preformed commensal biofilms - is novel and may serve to further broaden the application of microbial biofilms to human health.


Asunto(s)
Antibiosis , Limosilactobacillus fermentum , Probióticos , Biopelículas/crecimiento & desarrollo , Células CACO-2 , Humanos , Limosilactobacillus fermentum/crecimiento & desarrollo , Limosilactobacillus fermentum/metabolismo
6.
Mol Cell Biol ; 23(11): 3788-97, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12748282

RESUMEN

Approximately 800 transcripts in Saccharomyces cerevisiae are cell cycle regulated. The oscillation of approximately 40% of these genes, including a prominent subclass involved in nutrient acquisition, is not understood. To address this problem, we focus on the mitosis-specific activation of the phosphate-responsive promoter, PHO5. We show that the unexpected mitotic induction of the PHO5 acid phosphatase in rich medium requires the transcriptional activators Pho4 and Pho2, the cyclin-dependent kinase inhibitor Pho81, and the chromatin-associated enzymes Gcn5 and Snf2/Swi2. PHO5 mitotic activation is repressed by addition of orthophosphate, which significantly increases cellular polyphosphate. Polyphosphate levels also fluctuate inversely with PHO5 mRNA during the cell cycle, further substantiating an antagonistic link between this phosphate polymer and PHO5 mitotic regulation. Moreover, deletion of PHM3, required for polyphosphate accumulation, leads to premature onset of PHO5 expression, as well as an increased rate, magnitude, and duration of PHO5 activation. Orthophosphate addition, however, represses mitotic PHO5 expression in a phm3delta strain. Thus, polyphosphate per se is not necessary to repress PHO transcription but, when present, replenishes cellular phosphate during nutrient depletion. These results demonstrate a dynamic mechanism of mitotic transcriptional regulation that operates mostly independently of factors that drive progression through the cell cycle.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica , Mitosis/fisiología , Proteínas Nucleares , Proteínas de Transporte de Fosfato/metabolismo , Polifosfatos/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Adenosina Trifosfatasas , Genes Fúngicos , Histona Acetiltransferasas , Proteínas de Homeodominio/metabolismo , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Transactivadores/metabolismo
7.
Nat Commun ; 8: 14405, 2017 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-28194040

RESUMEN

Huntington's Disease (HD) is a neurodegenerative disease caused by poly-glutamine expansion in the Htt protein, resulting in Htt misfolding and cell death. Expression of the cellular protein folding and pro-survival machinery by heat shock transcription factor 1 (HSF1) ameliorates biochemical and neurobiological defects caused by protein misfolding. We report that HSF1 is degraded in cells and mice expressing mutant Htt, in medium spiny neurons derived from human HD iPSCs and in brain samples from patients with HD. Mutant Htt increases CK2α' kinase and Fbxw7 E3 ligase levels, phosphorylating HSF1 and promoting its proteasomal degradation. An HD mouse model heterozygous for CK2α' shows increased HSF1 and chaperone levels, maintenance of striatal excitatory synapses, clearance of Htt aggregates and preserves body mass compared with HD mice homozygous for CK2α'. These results reveal a pathway that could be modulated to prevent neuronal dysfunction and muscle wasting caused by protein misfolding in HD.


Asunto(s)
Encéfalo/metabolismo , Factores de Transcripción del Choque Térmico/metabolismo , Enfermedad de Huntington/metabolismo , Neuronas/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Factores de Transcripción del Choque Térmico/genética , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Células PC12 , Ratas
8.
Cell Rep ; 9(3): 955-66, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25437552

RESUMEN

Heat shock transcription factor 1 (HSF1) is an evolutionarily conserved transcription factor that protects cells from protein-misfolding-induced stress and apoptosis. The mechanisms by which cytosolic protein misfolding leads to HSF1 activation have not been elucidated. Here, we demonstrate that HSF1 is directly regulated by TRiC/CCT, a central ATP-dependent chaperonin complex that folds cytosolic proteins. A small-molecule activator of HSF1, HSF1A, protects cells from stress-induced apoptosis, binds TRiC subunits in vivo and in vitro, and inhibits TRiC activity without perturbation of ATP hydrolysis. Genetic inactivation or depletion of the TRiC complex results in human HSF1 activation, and HSF1A inhibits the direct interaction between purified TRiC and HSF1 in vitro. These results demonstrate a direct regulatory interaction between the cytosolic chaperone machine and a critical transcription factor that protects cells from proteotoxicity, providing a mechanistic basis for signaling perturbations in protein folding to a stress-protective transcription factor.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Estrés del Retículo Endoplásmico , Complejos Multiproteicos/metabolismo , Factores de Transcripción/metabolismo , Animales , Apoptosis/efectos de los fármacos , Citoprotección/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células HEK293 , Células HeLa , Factores de Transcripción del Choque Térmico , Humanos , Ratones , Células 3T3 NIH , Unión Proteica/efectos de los fármacos , Subunidades de Proteína/metabolismo , Ratas , Saccharomyces cerevisiae/metabolismo , Tunicamicina/farmacología
9.
G3 (Bethesda) ; 3(8): 1315-24, 2013 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-23733891

RESUMEN

Human heat shock transcription factor 1 (HSF1) promotes the expression of stress-responsive genes and is a critical factor for the cellular protective response to proteotoxic and other stresses. In response to stress, HSF1 undergoes a transition from a repressed cytoplasmic monomer to a homotrimer, accumulates in the nucleus, binds DNA, and activates target gene transcription. Although these steps occur as sequential and highly regulated events, our understanding of the full details of the HSF1 activation pathway remains incomplete. Here we describe a genetic screen in humanized yeast that identifies constitutively trimerized HSF1 mutants. Surprisingly, constitutively trimerized HSF1 mutants do not bind to DNA in vivo in the absence of stress and only become DNA binding competent upon stress exposure, suggesting that an additional level of regulation beyond trimerization and nuclear localization may be required for HSF1 DNA binding. Furthermore, we identified a constitutively trimerized and nuclear-localized HSF1 mutant, HSF1 L189P, located in LZ3 of the HSF1 trimerization domain, which in response to proteotoxic stress is strongly compromised for DNA binding at the Hsp70 and Hsp25 promoters but readily binds to the interleukin-6 promoter, suggesting that HSF1 DNA binding is in part regulated in a locus-dependent manner, perhaps via promoter-specific differences in chromatin architecture. Furthermore, these results implicate the LZ3 region of the HSF1 trimerization domain in a function beyond its canonical role in HSF1 trimerization.


Asunto(s)
Proteínas de Unión al ADN/genética , ADN/genética , Selección Genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Animales , Cromatina/química , Cromatina/metabolismo , ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Factores de Transcripción del Choque Térmico , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Leucina Zippers , Datos de Secuencia Molecular , Mutagénesis , Motivos de Nucleótidos , Regiones Promotoras Genéticas , Unión Proteica , Multimerización de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Factores de Transcripción/química , Factores de Transcripción/metabolismo
10.
Nat Rev Drug Discov ; 10(12): 930-44, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22129991

RESUMEN

Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and prion-based neurodegeneration are associated with the accumulation of misfolded proteins, resulting in neuronal dysfunction and cell death. However, current treatments for these diseases predominantly address disease symptoms, rather than the underlying protein misfolding and cell death, and are not able to halt or reverse the degenerative process. Studies in cell culture, fruitfly, worm and mouse models of protein misfolding-based neurodegenerative diseases indicate that enhancing the protein-folding capacity of cells, via elevated expression of chaperone proteins, has therapeutic potential. Here, we review advances in strategies to harness the power of the natural cellular protein-folding machinery through pharmacological activation of heat shock transcription factor 1--the master activator of chaperone protein gene expression--to treat neurodegenerative diseases.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Sistemas de Liberación de Medicamentos , Proteínas de Choque Térmico/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Sistemas de Liberación de Medicamentos/métodos , Factores de Transcripción del Choque Térmico , Proteínas de Choque Térmico/antagonistas & inhibidores , Proteínas de Choque Térmico/genética , Humanos , Enfermedades Neurodegenerativas/patología , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética
11.
PLoS One ; 6(1): e15976, 2011 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-21253609

RESUMEN

Heat shock transcription factor 1 (HSF1) plays an important role in the cellular response to proteotoxic stresses. Under normal growth conditions HSF1 is repressed as an inactive monomer in part through post-translation modifications that include protein acetylation, sumoylation and phosphorylation. Upon exposure to stress HSF1 homotrimerizes, accumulates in nucleus, binds DNA, becomes hyper-phosphorylated and activates the expression of stress response genes. While HSF1 and the mechanisms that regulate its activity have been studied for over two decades, our understanding of HSF1 regulation remains incomplete. As previous studies have shown that HSF1 and the heat shock response promoter element (HSE) are generally structurally conserved from yeast to metazoans, we have made use of the genetically tractable budding yeast as a facile assay system to further understand the mechanisms that regulate human HSF1 through phosphorylation of serine 303. We show that when human HSF1 is expressed in yeast its phosphorylation at S303 is promoted by the MAP-kinase Slt2 independent of a priming event at S307 previously believed to be a prerequisite. Furthermore, we show that phosphorylation at S303 in yeast and mammalian cells occurs independent of GSK3, the kinase primarily thought to be responsible for S303 phosphorylation. Lastly, while previous studies have suggested that S303 phosphorylation represses HSF1-dependent transactivation, we now show that S303 phosphorylation also represses HSF1 multimerization in both yeast and mammalian cells. Taken together, these studies suggest that yeast cells will be a powerful experimental tool for deciphering aspects of human HSF1 regulation by post-translational modifications.


Asunto(s)
Proteínas de Unión al ADN/genética , Respuesta al Choque Térmico/genética , Procesamiento Proteico-Postraduccional , Factores de Transcripción/genética , Clonación Molecular , Glucógeno Sintasa Quinasa 3/metabolismo , Factores de Transcripción del Choque Térmico , Humanos , Fosforilación , Levaduras/genética
12.
Mol Cell Biol ; 29(18): 4891-905, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19596791

RESUMEN

Cells devote considerable resources to nutrient homeostasis, involving nutrient surveillance, acquisition, and storage at physiologically relevant concentrations. Many Saccharomyces cerevisiae transcripts coding for proteins with nutrient uptake functions exhibit peak periodic accumulation during M phase, indicating that an important aspect of nutrient homeostasis involves transcriptional regulation. Inorganic phosphate is a central macronutrient that we have previously shown oscillates inversely with mitotic activation of PHO5. The mechanism of this periodic cell cycle expression remains unknown. To date, only two sequence-specific activators, Pho4 and Pho2, were known to induce PHO5 transcription. We provide here evidence that Mcm1, a MADS-box protein, is essential for PHO5 mitotic activation. In addition, we found that cells simultaneously lacking the forkhead proteins, Fkh1 and Fkh2, exhibited a 2.5-fold decrease in PHO5 expression. The Mcm1-Fkh2 complex, first shown to transactivate genes within the CLB2 cluster that drive G(2)/M progression, also associated directly at the PHO5 promoter in a cell cycle-dependent manner in chromatin immunoprecipitation assays. Sds3, a component specific to the Rpd3L histone deacetylase complex, was also recruited to PHO5 in G(1). These findings provide (i) further mechanistic insight into PHO5 mitotic activation, (ii) demonstrate that Mcm1-Fkh2 can function combinatorially with other activators to yield late M/G(1) induction, and (iii) couple the mitotic cell cycle progression machinery to cellular phosphate homeostasis.


Asunto(s)
Homeostasis , Mitosis , Fosfatos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Transcripción Genética , Fosfatasa Ácida/química , Fosfatasa Ácida/genética , Fosfatasa Ácida/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Activación Enzimática , Factores de Transcripción Forkhead/metabolismo , Fase G1 , Fase G2 , Eliminación de Gen , Proteína 1 de Mantenimiento de Minicromosoma , Modelos Genéticos , Datos de Secuencia Molecular , Mutación/genética , Polifosfatos/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo
13.
Mol Microbiol ; 60(1): 240-51, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16556235

RESUMEN

Heat shock transcription factor (HSF) mediates the transcriptional response of eukaryotic cells to heat, infection and inflammation, pharmacological agents, and other stresses. Although genes encoding heat shock proteins (HSPs) are the best characterized targets of HSF, recent genome-wide localization of Saccharomyces cerevisiae HSF revealed novel HSF targets involved in a wide range of cellular functions. One such target, the RPN4 gene, encodes a transcription factor that directly activates expression of a number of genes encoding proteasome subunits. Here we demonstrate that HSF co-ordinates a feed-forward gene regulatory circuit for RPN4 activation. We show that HSF activates expression of PDR3, encoding a multidrug resistance (MDR) transcription factor that also directly activates RPN4 gene expression. We demonstrate that the HSF binding site (HSE) in the RPN4 promoter is primarily responsible for heat- or methyl methanesulphonate induction of RPN4, with a minor contribution of Pdr3 binding sites (PDREs), while a Yap1 binding site (YRE) is responsible for RPN4 induction in response to oxidative stress. Furthermore, heat-induced expression of Rpn4 protein leads to expression of Rpn4 targets at later stages of heat stress, providing a temporal controlling mechanism for proteasome synthesis upon stress conditions that could result in irreversibly damaged proteins. In addition, the overlapping transcriptional regulatory networks involving HSF, Yap1 and Pdr3 suggest a close linkage between stress responses and pleiotropic drug resistance.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Sitios de Unión , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Farmacorresistencia Microbiana , Proteínas de Choque Térmico/genética , Metilmetanosulfonato , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/química , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda