RESUMEN
The house dust mite is the principal source of perennial aeroallergens in man. How these allergens activate innate and adaptive immunity is unclear, and therefore, there are no therapies targeting mite allergens. Here, we show that house dust mite extract activates store-operated Ca2+ channels, a common signaling module in numerous cell types in the lung. Activation of channel pore-forming Orai1 subunits by mite extract requires gating by STIM1 proteins. Although mite extract stimulates both protease-activated receptor type 2 (PAR2) and PAR4 receptors, Ca2+ influx is more tightly coupled to the PAR4 pathway. We identify a major role for the serine protease allergen Der p3 in stimulating Orai1 channels and show that a therapy involving sub-maximal inhibition of both Der p3 and Orai1 channels suppresses mast cell activation to house dust mite. Our results reveal Der p3 as an important aeroallergen that activates Ca2+ channels and suggest a therapeutic strategy for treating mite-induced asthma.
Asunto(s)
Antígenos Dermatofagoides/metabolismo , Proteínas de Artrópodos/metabolismo , Señalización del Calcio , Movimiento Celular , Mastocitos/metabolismo , Mucosa Nasal/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Pyroglyphidae/enzimología , Receptores de Trombina/metabolismo , Serina Endopeptidasas/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Animales , Antígenos Dermatofagoides/efectos adversos , Antígenos Dermatofagoides/genética , Antígenos Dermatofagoides/inmunología , Proteínas de Artrópodos/efectos adversos , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Asma/inmunología , Asma/metabolismo , Células HEK293 , Humanos , Exposición por Inhalación , Inositol 1,4,5-Trifosfato/metabolismo , Activación del Canal Iónico , Células Jurkat , Mastocitos/inmunología , Ratones Endogámicos C57BL , Mucosa Nasal/inmunología , Pyroglyphidae/genética , Pyroglyphidae/inmunología , Receptor PAR-2 , Receptores Acoplados a Proteínas G/metabolismo , Serina Endopeptidasas/efectos adversos , Serina Endopeptidasas/genética , Serina Endopeptidasas/inmunologíaRESUMEN
Receptor desensitization is a universal mechanism to turn off a biological response; in this process, the ability of a physiological trigger to activate a cell is lost despite the continued presence of the stimulus. Receptor desensitization of G-protein-coupled receptors involves uncoupling of the receptor from its G-protein or second-messenger pathway followed by receptor internalization. G-protein-coupled cysteinyl leukotriene type I (CysLT1) receptors regulate immune-cell function and CysLT1 receptors are an established therapeutic target for allergies, including asthma. Desensitization of CysLT1 receptors arises predominantly from protein-kinase-C-dependent phosphorylation of three serine residues in the receptor carboxy terminus. Physiological concentrations of the receptor agonist leukotriene C(4) (LTC(4)) evoke repetitive cytoplasmic Ca(2+) oscillations, reflecting regenerative Ca(2+) release from stores, which is sustained by Ca(2+) entry through store-operated calcium-release-activated calcium (CRAC) channels. CRAC channels are tightly linked to expression of the transcription factor c-fos, a regulator of numerous genes important to cell growth and development. Here we show that abolishing leukotriene receptor desensitization suppresses agonist-driven gene expression in a rat cell line. Mechanistically, stimulation of non-desensitizing receptors evoked prolonged inositol-trisphosphate-mediated Ca(2+) release, which led to accelerated Ca(2+)-dependent slow inactivation of CRAC channels and a subsequent loss of excitation-transcription coupling. Hence, rather than serving to turn off a biological response, reversible desensitization of a Ca(2+) mobilizing receptor acts as an 'on' switch, sustaining long-term signalling in the immune system.
Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Citoplasma/metabolismo , Regulación hacia Abajo , Regulación de la Expresión Génica , Receptores de Leucotrienos/metabolismo , Animales , Señalización del Calcio/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Leucotrieno C4/farmacología , Mastocitos , Fosfoserina/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Tapsigargina/farmacologíaRESUMEN
Stimulation of cells with physiological concentrations of calcium-mobilizing agonists often results in the generation of repetitive cytoplasmic Ca(2+) oscillations. Although oscillations arise from regenerative Ca(2+) release, they are sustained by store-operated Ca(2+) entry through Ca(2+) release-activated Ca(2+) (CRAC) channels. Here, we show that following stimulation of cysteinyl leukotriene type I receptors in rat basophilic leukemia (RBL)-1 cells, large amplitude Ca(2+) oscillations, CRAC channel activity, and downstream Ca(2+)-dependent nuclear factor of activated T cells (NFAT)-driven gene expression are all exclusively maintained by the endoplasmic reticulum Ca(2+) sensor stromal interaction molecule (STIM) 1. However, stimulation of tyrosine kinase-coupled FCεRI receptors evoked Ca(2+) oscillations and NFAT-dependent gene expression through recruitment of both STIM2 and STIM1. We conclude that different agonists activate different STIM proteins to sustain Ca(2+) signals and downstream responses.
Asunto(s)
Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/genética , Animales , Canales de Calcio/metabolismo , Proteínas de Unión al Calcio/antagonistas & inhibidores , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Línea Celular Tumoral , Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Leucotrieno C4/farmacología , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Factores de Transcripción NFATC/metabolismo , Ratas , Receptores de Leucotrienos/metabolismo , Molécula de Interacción Estromal 1 , Molécula de Interacción Estromal 2RESUMEN
We report a patient who sustained an AFF (Atypical femoral fractures) after 15 years of bisphosphonate treatment. DEXA scans can be utilized to identify early evidence of AFF in asymptomatic patients up to 9 years before the development of an AFF.
RESUMEN
Canonical transient receptor potential (TRPC) channels are widely expressed in the brain and play several roles in development and normal neuronal function. In the cerebellum, Purkinje cell TRPC3 channels underlie the slow excitatory postsynaptic potential observed after parallel fiber stimulation. In these cells TRPC3 channel opening requires stimulation of metabotropic glutamate receptor 1, activation of which can also lead to the induction of long term depression (LTD), which underlies cerebellar motor learning. LTD induction requires protein kinase C (PKC) and protein kinase G (PKG) activation, and although PKC phosphorylation targets are well established, virtually nothing is known about PKG targets in LTD. Because TRPC3 channels are inhibited after phosphorylation by PKC and PKG in expression systems, we examined whether native TRPC3 channels in Purkinje cells are a target for PKG or PKC, thereby contributing to cerebellar LTD. We find that in Purkinje cells, activation of TRPC3-dependent currents is not inhibited by conventional PKC or PKG to any significant extent and that inhibition of these kinases does not significantly impact on TRPC3-mediated currents either. Based on these and previous findings, we propose that TRPC3-dependent currents may differ significantly in their regulation from those overexpressed in expression systems.
Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Depresión Sináptica a Largo Plazo/fisiología , Proteína Quinasa C/metabolismo , Células de Purkinje/fisiología , Canales Catiónicos TRPC/fisiología , Animales , Cerebelo/citología , Cerebelo/fisiología , Células HEK293 , Humanos , Activación del Canal Iónico/fisiología , Ratones , Ratones Endogámicos C57BL , Técnicas de Cultivo de Órganos , Fosforilación/fisiología , Ratas , Ratas Sprague-Dawley , Receptores de Glutamato Metabotrópico/fisiología , Transducción de Señal/fisiología , Sinapsis/fisiologíaRESUMEN
NFATs are a family of Ca(2+)-dependent transcription factors that play a central role in the morphogenesis, development, and physiological activities of numerous distinct cell types and organ systems. Here, we visualize NFAT1 movement in and out of the nucleus in response to transient activation of store-operated Ca(2+) release-activated Ca(2+) (CRAC) channels in nonexcitable cells. We show that NFAT migration is exquisitely sensitive to Ca(2+) microdomains near open CRAC channels. Another Ca(2+)-permeable ion channel (TRPC3) was ineffective in driving NFAT1 to the nucleus. NFAT1 movement is temporally dissociated from the time course of the Ca(2+) signal and remains within the nucleus for 10 times longer than the duration of the trigger Ca(2+) signal. Kinetic analyses of each step linking CRAC channel activation to NFAT1 nuclear residency reveals that the rate-limiting step is transcription factor exit from the nucleus. The slow deactivation of NFAT provides a mechanism whereby Ca(2+)-dependent responses can be sustained despite the termination of the initial Ca(2+) signal and helps explain how gene expression in nonexcitable cells can continue after the primary stimulus has been removed.
Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Factores de Transcripción NFATC/metabolismo , Transporte Activo de Núcleo Celular , Línea Celular , Humanos , Cinética , Microdominios de Membrana/química , Canales Catiónicos TRPCRESUMEN
Store-operated Ca2+ channels in the plasma membrane (PM) are activated by the depletion of Ca2+ from the endoplasmic reticulum (ER) and constitute a widespread and highly conserved Ca2+ influx pathway. After store emptying, the ER Ca2+ sensor STIM1 forms multimers, which then migrate to ER-PM junctions where they activate the Ca2+ release-activated Ca2+ channel Orai1. Movement of an intracellular protein to such specialized sites where it gates an ion channel is without precedence, but the fundamental question of how STIM1 migrates remains unresolved. Here, we show that trafficking of STIM1 to ER-PM junctions and subsequent Ca2+ release-activated Ca2+ channel activity is impaired following mitochondrial depolarization. We identify the dynamin-related mitochondrial protein mitofusin 2, mutations of which causes the inherited neurodegenerative disease Charcot-Marie-Tooth IIa in humans, as an important component of this mechanism. Our results reveal a molecular mechanism whereby a mitochondrial fusion protein regulates protein trafficking across the endoplasmic reticulum and reveals a homeostatic mechanism whereby mitochondrial depolarization can inhibit store-operated Ca2+ entry, thereby reducing cellular Ca2+ overload.
Asunto(s)
Calcio/metabolismo , Membrana Celular/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Neoplasias/metabolismo , Animales , Transporte Biológico , Línea Celular , Línea Celular Tumoral , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , GTP Fosfohidrolasas , Humanos , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/genética , Microscopía Confocal , Microscopía Electrónica , Mitocondrias/ultraestructura , Proteínas Mitocondriales/genética , Proteínas de Neoplasias/genética , Técnicas de Placa-Clamp , Ratas , Molécula de Interacción Estromal 1RESUMEN
Plasma membrane store-operated Ca²âº release-activated Ca²âº (CRAC) channels are a widespread and conserved Ca²âº influx pathway, driving activation of a range of spatially and temporally distinct cellular responses. Although CRAC channels are activated by the loss of Ca²âº from the endoplasmic reticulum, their gating is regulated by mitochondria. Through their ability to buffer cytoplasmic Ca²âº, mitochondria take up Ca²âº released from the endoplasmic reticulum by InsP3 receptors, leading to more extensive store depletion and stronger activation of CRAC channels. Mitochondria also buffer Ca²âº that enters through CRAC channels, reducing Ca²âº-dependent slow inactivation of the channels. In addition, depolarised mitochondria impair movement of the CRAC channel activating protein STIM1 across the endoplasmic reticulum membrane. Because they regulate CRAC channel activity, particularly Ca²âº-dependent slow inactivation, mitochondria influence CRAC channel-driven enzyme activation, secretion and gene expression. Mitochondrial regulation of CRAC channels therefore provides an important control element to the regulation of intracellular Ca²âº signalling.
Asunto(s)
Señalización del Calcio , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , GTP Fosfohidrolasas/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Activación del Canal Iónico , Mastocitos/metabolismoRESUMEN
Communication between the cell surface and the nucleus is essential for regulated gene expression. In neurons, Ca(2+)-dependent gene transcription is sensitive to local Ca(2+) entry. In immune cells, excitation-transcription coupling is thought to involve global Ca(2+) signals. Here, we show that in mast cells, Ca(2+) microdomains from store-operated Ca(2+) release-activated Ca(2+) channels activate expression of the transcription factor c-fos. Local Ca(2+) entry is sensed by the tyrosine kinase Syk, which signals to the nucleus through the transcription factor STAT5. Ca(2+) microdomains also promote secretion of proinflammatory messengers, which, like gene expression, requires Syk. Syk therefore couples Ca(2+) microdomains to the activation of two spatially and temporally distinct cellular responses, revealing the versatility of local Ca(2+) signals in driving cell activation.
Asunto(s)
Calcio/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Animales , Señalización del Calcio , Línea Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Modelos Biológicos , Técnicas de Placa-Clamp , Estructura Terciaria de Proteína , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Quinasa Syk , Factores de Tiempo , Transcripción GenéticaRESUMEN
Mast cells are key components of the immune system, where they help orchestrate the inflammatory response. Aberrant mast cell activation is linked to a variety of allergic diseases, including asthma, eczema, rhinitis, and nasal polyposis, which in combination affect up to 20% of the population in industrialized countries. On activation, mast cells release a variety of signals that target the bronchi and vasculature and recruit other immune cells to the inflammatory site. Prominent among such signals are the cysteinyl leukotrienes, a family of potent proinflammatory lipid mediators comprising leukotriene C(4) (LTC(4)), LTD(4), and LTE(4). LTC(4), the parent compound, is secreted from mast cells following Ca(2+) influx through store-operated calcium release-activated calcium (CRAC) channels. Here, we show that activated mast cells release a paracrine signal that evokes Ca(2+) signals in spatially separate resting mast cells. The paracrine signal was identified as a cysteinyl leukotriene because 1) RNAi knockdown or pharmacological block of the 5-lipoxygenase enzyme prevented activated mast cells from stimulating resting cells. 2) Block of cysteinyl leukotriene type I receptors on resting mast cells with the clinically prescribed receptor antagonist montelukast prevented their activation by active mast cells. 3) RNAi knockdown of cysteinyl leukotriene type I receptors on resting cells prevented them from responding to the paracrine signal derived from activated mast cells. 4) Purified LTC(4) evoked Ca(2+) signals in mast cells that were identical to those triggered by the paracrine signal. Low levels of stimulus intensity released sufficient levels of leukotriene to activate resting cells. Leukotriene secretion still occurred tens of minutes after stimulation, suggesting a role as a long-lasting trigger in mast cell activation. Stimulation of the cysteinyl leukotriene receptor activated CRAC channels and evoked prominent store-operated Ca(2+) entry. This resulted in further cysteinyl leukotriene production, triggering a positive feedback cascade. Acutely isolated mast cells from patients with allergic rhinitis exhibited store-operated Ca(2+) influx through CRAC channels and responded to cysteinyl leukotrienes. Histological analysis of samples taken from patients revealed clustering of mast cells, often located within 20 microm of each other, a distance sufficient for paracrine signaling by leukotrienes to operate effectively. We conclude that a positive-feedback cascade involving CRAC channels and cysteinyl leukotrienes constitute a novel mechanism for sustaining mast cell activation.
Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Leucotrieno C4/metabolismo , Acetatos/farmacología , Adenosina Trifosfato/metabolismo , Animales , Células Cultivadas , Ciclopropanos , Femenino , Humanos , Antagonistas de Leucotrieno/farmacología , Mastocitos/efectos de los fármacos , Mastocitos/metabolismo , Comunicación Paracrina/fisiología , Quinolinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de Leucotrienos/metabolismo , SulfurosRESUMEN
BACKGROUND: Nasal polyposis is a chronic inflammatory disease of the upper respiratory tract that affects around 2% of the population and almost 67% of patients with aspirin-intolerant asthma. Polyps are rich in mast cells and eosinophils, resulting in high levels of the proinflammatory cysteinyl leukotrienes. OBJECTIVES: To better understand the role of the proinflammatory leukotrienes in nasal polyposis, we asked the following questions: (1) How do nasal polyps produce leukotriene C(4) (LTC(4))? (2) Can LTC(4) feed back in a paracrine way to maintain mast cell activation? (3) Could a combination therapy targeting the elements of this feed-forward loop provide a novel therapy for allergic disease? METHODS: We have used immunohistochemistry, enzyme immunoassay, and cytoplasmic calcium ion (Ca(2+)) imaging to address these questions on cultured and acutely isolated human mast cells from patients with polyposis. RESULTS: Ca(2+) entry through store-operated Ca(2+) release-activated Ca(2+) (CRAC) channels in polyps produced LTC(4) in a manner dependent on protein kinase C. LTC(4) thus generated activated mast cells through cysteinyl leukotriene type I receptors. Hence Ca(2+) influx into mast cells stimulates LTC(4) production, which then acts as a paracrine signal to activate further Ca(2+) influx. A combination of a low concentration of both a CRAC channel blocker and a leukotriene receptor antagonist was as effective at suppressing mast cell activation as a high concentration of either antagonist alone. CONCLUSION: A drug combination directed against CRAC channels and leukotriene receptor antagonist suppresses the feed-forward loop that leads to aberrant mast cell activation. Hence our results identify a new potential strategy for combating polyposis and mast cell-dependent allergies.
Asunto(s)
Bloqueadores de los Canales de Calcio/uso terapéutico , Canales de Calcio/metabolismo , Antagonistas de Leucotrieno/uso terapéutico , Pólipos Nasales/tratamiento farmacológico , Pólipos Nasales/metabolismo , Receptores de Leucotrienos/metabolismo , Acetatos/farmacología , Araquidonato 5-Lipooxigenasa/metabolismo , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Señalización del Calcio , Ciclopropanos , Humanos , Hidroxiurea/análogos & derivados , Hidroxiurea/farmacología , Antagonistas de Leucotrieno/farmacología , Leucotrieno C4/antagonistas & inhibidores , Leucotrieno C4/metabolismo , Mastocitos/efectos de los fármacos , Mastocitos/metabolismo , Quinolinas/farmacología , Receptores de Leucotrienos/efectos de los fármacos , Sulfuros , Tapsigargina/farmacologíaRESUMEN
A rise in cytosolic Ca(2+) concentration is used as a key activation signal in virtually all animal cells, where it triggers a range of responses including neurotransmitter release, muscle contraction, and cell growth and proliferation [1]. During intracellular Ca(2+) signaling, mitochondria rapidly take up significant amounts of Ca(2+) from the cytosol, and this stimulates energy production, alters the spatial and temporal profile of the intracellular Ca(2+) signal, and triggers cell death [2-10]. Mitochondrial Ca(2+) uptake occurs via a ruthenium-red-sensitive uniporter channel found in the inner membrane [11]. In spite of its critical importance, little is known about how the uniporter is regulated. Here, we report that the mitochondrial Ca(2+) uniporter is gated by cytosolic Ca(2+). Ca(2+) uptake into mitochondria is a Ca(2+)-activated process with a requirement for functional calmodulin. However, cytosolic Ca(2+) subsequently inactivates the uniporter, preventing further Ca(2+) uptake. The uptake pathway and the inactivation process have relatively low Ca(2+) affinities of approximately 10-20 microM. However, numerous mitochondria are within 20-100 nm of the endoplasmic reticulum, thereby enabling rapid and efficient transmission of Ca(2+) release into adjacent mitochondria by InsP(3) receptors on the endoplasmic reticulum. Hence, biphasic control of mitochondrial Ca(2+) uptake by Ca(2+) provides a novel basis for complex physiological patterns of intracellular Ca(2+) signaling.
Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Mitocondrias/metabolismo , Transducción de Señal/fisiología , Animales , Transporte Biológico Activo/fisiología , Línea Celular Tumoral , Citosol/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Transporte Iónico/fisiología , Microscopía Electrónica de Transmisión , Mitocondrias/ultraestructura , RatasRESUMEN
Cytosolic phospholipase A2 (cPLA2) is a Ca2+-dependent enzyme that mediates agonist-dependent arachidonic acid release in most cell types. Arachidonic acid can then be metabolized by the 5-lipoxygenase enzyme to generate the proinflammatory signal leukotriene C4 (LTC4). Here we report that Ca2+ entry through store-operated CRAC (Ca2+ release-activated Ca2+) channels activates the extracellular signal-regulated kinases (ERKs), members of the mitogen-activated protein kinase family, within minutes and this is necessary for stimulation of cPLA2. Ca2+ entry activates ERK indirectly, via recruitment of Ca2+-dependent protein kinase C alpha and betaI. Ca2+ influx also promotes translocation of cytosolic 5-lipoxygenase to the nuclear membrane, a key step in the activation of this enzyme. Translocation is dependent on ERK activation. A role for gene activation is shown by the finding that CRAC channel opening results in increased transcription and translation of c-fos. Inhibition of ERK activation failed to prevent c-fos expression. Our results show that CRAC channel activation elicits short-term effects through the co-coordinated regulation of two metabolic pathways (cPLA2 and 5-lipoxygenase), which results in the generation of both intra- and intercellular messengers within minutes, as well as longer term changes involving gene activation. These short-term effects are mediated via ERK, whereas, paradoxically, c-fos expression is not. Ca2+ influx through CRAC channels can therefore activate different signaling pathways at the same time, culminating in a range of temporally diverse responses.
Asunto(s)
Calcio/metabolismo , Leucotrieno C4/metabolismo , Mastocitos/fisiología , Fosfolipasas A/metabolismo , Animales , Canales de Calcio/fisiología , Línea Celular Tumoral , Citosol/enzimología , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Genes fos , Mastocitos/enzimología , Técnicas de Placa-Clamp , Fosfolipasas A2 , RatasRESUMEN
Ca(2+)-dependent gene expression is critical for cell growth, proliferation, plasticity, and adaptation [1-3]. Because a common mechanism in vertebrates linking cytoplasmic Ca(2+) signals with activation of protein synthesis involves the nuclear factor of activated T cells (NFAT) family of transcription factors [4, 5], we have quantified protein expression in single cells following physiological Ca(2+) signals by using NFAT-driven expression of a genetically encoded fluorescent protein. We find that gene expression following CRAC channel activation is an all-or-nothing event over a range of stimulus intensities. Increasing agonist concentration recruits more cells but each responding cell does so in an essentially digital manner. Furthermore, Ca(2+)-dependent gene expression shows both short-term memory and strong synergy, where two pulses of agonist, which are ineffectual individually, robustly activate gene expression provided that the time interval between them is short. Such temporal filtering imparts coincidence detection to Ca(2+)-dependent gene activation. The underlying molecular basis mapped to time-dependent, nonlinear accumulation of nuclear NFAT. Local Ca(2+) near CRAC channels has to rise above a threshold level to drive gene expression, providing analog control to the digital activation process and a means to filter out fluctuations in background noise from activating transcription while ensuring robustness and high fidelity in the excitation-transcription coupling mechanism.
Asunto(s)
Señalización del Calcio , Regulación de la Expresión Génica , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Canales de Calcio/fisiología , Proteínas Fluorescentes Verdes/análisis , Factores de Transcripción NFATC/metabolismo , Ratas , Activación TranscripcionalRESUMEN
Ca2+ entry through store-operated Ca2+ channels drives the production of the pro-inflammatory molecule leukotriene C4 (LTC4) from mast cells through a pathway involving Ca2+-dependent protein kinase C, mitogen-activated protein kinases ERK1/2, phospholipase A2, and 5-lipoxygenase. Here we examine whether local Ca2+ influx through store-operated Ca2+ release-activated Ca2+ (CRAC) channels in the plasma membrane stimulates this signaling pathway. Manipulating the amplitude and spatial extent of Ca2+ entry by altering chemical and electrical gradients for Ca2+ influx or changing the Ca2+ buffering of the cytoplasm all impacted on protein kinase C and ERK activation, generation of arachidonic acid and LTC4 secretion, with little change in the bulk cytoplasmic Ca2+ rise. Similar bulk cytoplasmic Ca2+ concentrations were achieved when CRAC channels were activated in 0.25 mm external Ca2+ versus 2 mm Ca2+ and 100 nm La3+, an inhibitor of CRAC channels. However, despite similar bulk cytoplasmic Ca2+, protein kinase C activation and LTC4 secretion were larger in 2 mm Ca2+ and La3+ than in 0.25 mm Ca2+, consistent with the central involvement of a subplasmalemmal Ca2+ rise. The nonreceptor tyrosine kinase Syk coupled CRAC channel opening to protein kinase C and ERK activation. Recombinant TRPC3 channels also activated protein kinase C, suggesting that subplasmalemmal Ca2+ rather than a microdomain exclusive to CRAC channels is the trigger. Hence a subplasmalemmal Ca2+ increase in mast cells is highly versatile in that it triggers cytoplasmic responses through generation of intracellular messengers as well as long distance changes through increased secretion of paracrine signals.
Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Mediadores de Inflamación/metabolismo , Leucotrieno C4/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Mastocitos/metabolismo , Comunicación Paracrina/fisiología , Proteína Quinasa C/metabolismo , Canales Catiónicos TRPC/metabolismo , Araquidonato 5-Lipooxigenasa/genética , Araquidonato 5-Lipooxigenasa/metabolismo , Ácido Araquidónico/metabolismo , Calcio/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Línea Celular , Citoplasma/enzimología , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lantano/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Mastocitos/citología , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Comunicación Paracrina/efectos de los fármacos , Fosfolipasas A2/genética , Fosfolipasas A2/metabolismo , Proteína Quinasa C/genética , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Quinasa Syk , Canales Catiónicos TRPC/antagonistas & inhibidoresRESUMEN
In nonexcitable cells, receptor stimulation evokes Ca(2+) release from the endoplasmic reticulum stores followed by Ca(2+) influx through store-operated Ca(2+) channels in the plasma membrane. In mast cells, store-operated entry is mediated via Ca(2+) release-activated Ca(2+) (CRAC) channels. In this study, we find that stimulation of muscarinic receptors in cultured mast cells results in Ca(2+)-dependent activation of protein kinase Calpha and the mitogen activated protein kinases ERK1/2 and this is required for the subsequent stimulation of the enzymes Ca(2+)-dependent phospholipase A(2) and 5-lipoxygenase, generating the intracellular messenger arachidonic acid and the proinflammatory intercellular messenger leukotriene C(4). In cell population studies, ERK activation, arachidonic acid release, and leukotriene C(4) secretion were all graded with stimulus intensity. However, at a single cell level, Ca(2+) influx was related to agonist concentration in an essentially all-or-none manner. This paradox of all-or-none CRAC channel activation in single cells with graded responses in cell populations was resolved by the finding that increasing agonist concentration recruited more mast cells but each cell responded by generating all-or-none Ca(2+) influx. These findings were extended to acutely isolated rat peritoneal mast cells where muscarinic or P2Y receptor stimulation evoked all-or-none activation of Ca(2+)entry but graded responses in cell populations. Our results identify a novel way for grading responses to agonists in immune cells and highlight the importance of CRAC channels as a key pharmacological target to control mast cell activation.
Asunto(s)
Canales de Calcio/metabolismo , Calcio/fisiología , Carbacol/farmacología , Agonistas Colinérgicos/farmacología , Mastocitos/metabolismo , Animales , Transporte Biológico Activo/efectos de los fármacos , Transporte Biológico Activo/fisiología , Calcio/metabolismo , Canales de Calcio/fisiología , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Cationes Bivalentes/metabolismo , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Femenino , Fosfolipasas A2 Grupo IV/biosíntesis , Fosfolipasas A2 Grupo IV/metabolismo , Leucotrieno C4/biosíntesis , Leucotrieno C4/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Mastocitos/efectos de los fármacos , Mastocitos/enzimología , Ratas , Ratas Sprague-Dawley , Receptores Muscarínicos/metabolismo , Receptores Muscarínicos/fisiologíaRESUMEN
To study the type of presynaptic calcium channels controlling transmitter release at synaptic connections displaying depression or facilitation, dual whole cell recordings combined with biocytin labelling were performed in acute slices from motor cortex of 17- to 22-day-old rats. Layer V postsynaptic interneurons displayed either fast spiking (FS) (n = 12) or burst firing (BF) (n = 12) behaviour. The axons of FS cells ramified preferentially around pyramidal cell somata, while BF cell axons ramified predominately around pyramidal cell dendrites. Synapses between pyramidal cells and FS cells displayed brief train depression (n = 12). Bath application of omega-Agatoxin IVA (0.5 microM), blocking P/Q-type calcium channels, decreased mean peak amplitudes of the EPSPs to 40% of control EPSPs (n = 8). Failure rate of the EPSPs after the first presynaptic action potential increased from 9 +/- 11 to 28 +/- 15%. This was associated with an increase in paired pulse ratio of 152 +/- 44%. Omega-conotoxin GVIA (1-10 microM), selectively blocking N-type calcium channels, had no effect on peak amplitudes or frequency dependent properties of these connections (n = 5). Synapses from pyramidal cells to BF cells displayed brief train facilitation (n = 8). Application of omega-Conotoxin in these connections decreased peak amplitudes of the EPSPs to 15% of control EPSPs (n = 6) and decreased the paired pulse ratio by 41 +/- 30%. Omega-agatoxin did not have any significant effect on the EPSPs elicited in BF cells. This study indicates that P/Q-type calcium channels are associated with transmitter release at connections displaying synaptic depression, whereas N-type channels are predominantly associated with connections displaying facilitation.