Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Crit Rev Biochem Mol Biol ; : 1-22, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38993040

RESUMEN

Sirtuins (SIRTs) are a family of proteins with enzymatic activity. In particular, they are a family of class III NAD+-dependent histone deacetylases and ADP-ribosyltransferases. NAD+-dependent deac(et)ylase activities catalyzed by sirtuin include ac(et)ylation, propionylation, butyrylation, crotonylation, manylation, and succinylation. Specifically, human SIRT3 is a 399 amino acid protein with two functional domains: a large Rossmann folding motif and NAD+ binding, and a small complex helix and zinc-binding motif. SIRT3 is widely expressed in mitochondria-rich tissues and is involved in maintaining mitochondrial integrity, homeostasis, and function. Moreover, SIRT3 regulates related diseases, such as aging, hepatic, kidney, neurodegenerative and cardiovascular disease, metabolic diseases, and cancer development. In particular, one of the most significant and damaging post-translational modifications is irreversible protein oxidation, i.e. carbonylation. This process is induced explicitly by increased ROS production due to mitochondrial dysfunction. SIRT3 is carbonylated by 4-hydroxynonenal at the level of Cys280. The carbonylation induces conformational changes in the active site, resulting in allosteric inhibition of SIRT3 activity and loss of the ability to deacetylate and regulate antioxidant enzyme activity. Phytochemicals and, in particular, polyphenols, thanks to their strong antioxidant activity, are natural compounds with a positive regulatory action on SIRT3 in various pathologies. Indeed, the enzymatic SIRT3 activity is modulated, for example, by different natural polyphenol classes, including resveratrol and the bergamot polyphenolic fraction. Thus, this review aims to elucidate the mechanisms by which phytochemicals can interact with SIRT3, resulting in post-translational modifications that regulate cellular metabolism.

2.
Med Res Rev ; 44(3): 1183-1188, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38167815

RESUMEN

Inborn errors of metabolism are related to mitochondrial disorders caused by dysfunction of the oxidative phosphorylation (OXPHOS) system. Congenital hypermetabolism in the infant is a rare disease belonging to Luft syndrome, nonthyroidal hypermetabolism, arising from a singular example of a defect in OXPHOS. The mitochondria lose coupling of mitochondrial substrates oxidation from the ADP phosphorylation. Since Luft syndrome is due to uncoupled cell respiration responsible for deficient in ATP production that originates in the respiratory complexes, a de novo heterozygous variant in the catalytic subunit of mitochondrial F1FO-ATPase arises as the main cause of an autosomal dominant syndrome of hypermetabolism associated with dysfunction in ATP production, which does not involve the respiratory complexes. The F1FO-ATPase works as an embedded molecular machine with a rotary action using two different motor engines. The FO, which is an integral domain in the membrane, dissipates the chemical potential difference for H+, a proton motive force (Δp), across the inner membrane to generate a torsion. The F1 domain-the hydrophilic portion responsible for ATP turnover-is powered by the molecular rotary action to synthesize ATP. The structural and functional coupling of F1 and FO domains support the energy transduction for ATP synthesis. The dissipation of Δp by means of an H+ slip correlated to rotor free-wheeling of the F1FO-ATPase has been discovered to cause enzyme dysfunction in primary mitochondrial disorders. In this insight, we try to offer commentary and analysis of the molecular mechanism in these impaired mitochondria.


Asunto(s)
Adenosina Trifosfatasas , Enfermedades Mitocondriales , Humanos , Adenosina Trifosfatasas/metabolismo , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo
3.
Biomedicines ; 12(6)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38927514

RESUMEN

UCP2 is an uncoupling protein homolog to UCP1. Unlike UCP1, which participates in non-shivering thermogenesis by uncoupling oxidative phosphorylation (OXPHOS), UCP2 does not perform a canonical H+ leak, consuming the protonmotive force (Δp) through the inner mitochondrial membrane. The UCP2 biological role is elusive. It can counteract oxidative stress, acting with a "mild uncoupling" process to reduce ROS production, and, in fact, UCP2 activities are related to inflammatory processes, triggering pathological conditions. However, the Δp dissipation by UCP2 activity reduces the mitochondrial ATP production and rewires the bioenergetic metabolism of the cells. In all likelihood, UCP2 works as a carrier of metabolites with four carbon atoms (C4), reversing the anaerobic glycolysis-dependent catabolism to OXPHOS. Indeed, UCP2 can perform catalysis in dual mode: mild uncoupling of OXPHOS and metabolite C4 exchange of mitochondria. In vivo, the UCP2 features in the biology of mitochondria promote healthy ageing, increased lifespan, and can assure cerebro- and cardiovascular protection. However, the pathological conditions responsible for insulin secretion suppression are dependent on UCP2 activity. On balance, the uncertain biochemical mechanisms dependent on UCP2 do not allow us to depict the protective role in mitochondrial bioenergetics.

4.
Theriogenology ; 219: 167-179, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38437767

RESUMEN

Porcine seminal plasma (SP) is loaded with a heterogeneous population of extracellular vesicles (sEVs) that modulate several reproductive-related processes. This study investigated the effect of two sEV subsets, small (S-sEVs) and large (L-sEVs), on porcine in vitro fertilization (IVF). The sEVs were isolated from nine SP pools (five ejaculates/pool) using a size-exclusion chromatography-based procedure and characterized for quantity (total protein), morphology (cryogenic electron microscopy), size distribution (dynamic light scattering), purity and EV-protein markers (flow cytometry; albumin, CD81, HSP90ß). The characterization confirmed the existence of two subsets of high purity (low albumin content) sEVs that differed in size (S- and L-sEVs). In vitro fertilization was performed with in vitro matured oocytes and frozen-thawed spermatozoa and the IVF medium was supplemented during gamete coincubation (1 h at 38.5 °C, 5 % CO2 in a humidified atmosphere) with three different concentrations of each sEV subset: 0 (control, without sEVs), 0.1, and 0.2 mg/mL. The first experiment showed that sEVs, regardless of subset and concentration, decreased penetration rates and total IVF efficiency (P < 0.0001). In a subsequent experiment, it was shown that sEVs, regardless of subset and concentration, impaired the ability of spermatozoa to bind to the zona pellucida of oocytes (P < 0.0001). The following experiment showed that sEVs, regardless of the subset, bound to frozen-thawed sperm but not to in vitro matured oocytes, indicating that sEVs would affect sperm functionality but not oocyte functionality. The lack of effect on oocytes was confirmed by incubating sEVs with oocytes prior to IVF, achieving sperm-zona pellucida binding results similar to those of control. In the last experiment, conducted under IVF conditions, sperm functionality was analyzed in terms of tyrosine phosphorylation, acrosome integrity and metabolism. The sEVs, regardless of the subset, did not affect sperm tyrosine phosphorylation or acrosome integrity, but did influence sperm metabolism by decreasing sperm ATP production under capacitating conditions. In conclusion, this study demonstrated that the presence of sEVs on IVF medium impairs IVF outcomes, most likely by altering sperm metabolism.


Asunto(s)
Semen , Interacciones Espermatozoide-Óvulo , Masculino , Porcinos , Animales , Fertilización In Vitro/veterinaria , Fertilización In Vitro/métodos , Espermatozoides/metabolismo , Oocitos , Zona Pelúcida/metabolismo , Albúminas/metabolismo , Tirosina/metabolismo
5.
Res Vet Sci ; 172: 105244, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38554548

RESUMEN

The value of pig as "large animal model" is a well-known tool for translational medicine, but it can also be beneficial in studying animal health in a one-health vision. The ConcePTION Project aims to provide new information about the risks associated with medication use during breastfeeding, as this information is not available for most commonly used drugs. In the IMI-Conception context, Göttingen Minipigs have been preferred to hybrid pigs for their genetic stability and microbiological control. For the first time, in the present research, three primary cell cultures of mammary epithelial cells were isolated and characterized from Göttingen Minipigs (mpMECs), including their ability to create the epithelial barrier. In addition, a comparative analysis between Göttingen Minipigs and commercial hybrid pig mammary epithelial cells (pMECs) was conducted. Epithelial markers: CKs, CK18, E-CAD, ZO-1 and OCL, were expressed in both mpMECs and pMECs. RT2 Profiler PCR Array Pig Drug Transporters showed a similar profile in mRNA drug transporters. No difference in energy production under basal metabolic condition was evidenced, while under stressed state, a different metabolic behaviour was shown between mpMECs vs pMECs. TEER measurement and sodium fluorescein transport, indicated that mpMECs were able to create an epithelial barrier, although, this turned out to be less compact than pMECs. By comparing mpMECs with mammary epithelial cells isolated from Hybrid pigs (pMECs), although both cell lines have morphological and phenotypic characteristics that make them both useful in barrier studies, some specific differences exist and must be considered in a translational perspective.


Asunto(s)
Células Epiteliales , Glándulas Mamarias Animales , Porcinos Enanos , Animales , Porcinos , Femenino , Glándulas Mamarias Animales/citología , Células Cultivadas
6.
Biochim Biophys Acta Bioenerg ; : 149505, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39154699

RESUMEN

Impaired mitochondria cause an impressive decrease in ATP production becoming a common condition of cardiovascular diseases. Myxomatous mitral valve disease (MMVD) is characterized by mitochondrial dysfunction. By a non-invasive procedure of metabolism analysis on peripheral blood mononuclear cells, we exploit ex-vivo studies that directly constitute a translational approach to evaluate the cell bioenergetics. Cell ATP production decreased in the presence of MMVD, whereas glycolysis was unaffected. In MMVD, the mitochondrial activity underwent a significant reduction of basal respiration, maximal respiration, and ATP production. Our results depicted a pathological condition of MMVD characterized by cell metabolism deprived of mitochondrial energy support.

7.
Eur J Cell Biol ; 103(2): 151398, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38368729

RESUMEN

Naringenin (NRG) was characterized for its ability to counteract mitochondrial dysfunction which is linked to cardiovascular diseases. The F1FO-ATPase can act as a molecular target of NRG. The interaction of NRG with this enzyme can avoid the energy transmission mechanism of ATP hydrolysis, especially in the presence of Ca2+ cation used as cofactor. Indeed, NRG was a selective inhibitor of the hydrophilic F1 domain displaying a binding site overlapped with quercetin in the inside surface of an annulus made by the three α and the three ß subunits arranged alternatively in a hexamer. The kinetic constant of inhibition suggested that NRG preferred the enzyme activated by Ca2+ rather than the F1FO-ATPase activated by the natural cofactor Mg2+. From the inhibition type mechanism of NRG stemmed the possibility to speculate that NRG can prevent the activation of F1FO-ATPase by Ca2+. The event correlated to the protective role in the mitochondrial permeability transition pore opening by NRG as well as to the reduction of ROS production probably linked to the NRG chemical structure with antioxidant action. Moreover, in primary cerebral endothelial cells (ECs) obtained from stroke prone spontaneously hypertensive rats NRG had a protective effect on salt-induced injury by restoring cell viability and endothelial cell tube formation while also rescuing complex I activity.


Asunto(s)
Células Endoteliales , Flavanonas , Poro de Transición de la Permeabilidad Mitocondrial , Flavanonas/farmacología , Animales , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Ratas , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Ratas Endogámicas SHR , Cloruro de Sodio/farmacología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Calcio/metabolismo , ATPasas de Translocación de Protón/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda