Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Biochemistry ; 61(13): 1273-1285, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35730892

RESUMEN

Glycosylphosphatidylinositol (GPI) anchoring of proteins is a eukaryotic, post-translational modification catalyzed by GPI transamidase (GPI-T). The Saccharomyces cerevisiae GPI-T is composed of five membrane-bound subunits: Gpi8, Gaa1, Gpi16, Gpi17, and Gab1. GPI-T has been recalcitrant to in vitro structure and function studies because of its complexity and membrane-solubility. Furthermore, a reliable, quantitative, in vitro assay for this important post-translational modification has remained elusive despite its discovery more than three decades ago.Three recent reports describe the structure of GPI-T from S. cerevisiae and humans, shedding critical light on this important enzyme and offering insight into the functions of its different subunits. Here, we present the purification and characterization of a truncated soluble GPI-T heterotrimer complex (Gpi823-306, Gaa150-343, and Gpi1620-551) without transmembrane domains. Using this simplified heterotrimer, we report the first quantitative method to measure GPI-T activity in vitro and demonstrate that this soluble, minimalistic GPI-T retains transamidase activity. These results contribute to our understanding of how this enzyme is organized and functions, and provide a method to screen potential GPI-T inhibitors.


Asunto(s)
Aciltransferasas , Proteínas de Saccharomyces cerevisiae , Aciltransferasas/química , Aciltransferasas/metabolismo , Glicosilfosfatidilinositoles , Humanos , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Arch Biochem Biophys ; 633: 58-67, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28893510

RESUMEN

Glycosylphosphatidylinositol transamidase (GPI-T) catalyzes the post-translational addition of the GPI anchor to the C-terminus of some proteins. In most eukaryotes, Gpi8, the active site subunit of GPI-T, is part of a hetero-pentameric complex containing Gpi16, Gaa1, Gpi17, and Gab1. Gpi8, Gaa1, and Gpi16 co-purify as a heterotrimer from Saccharomyces cerevisiae, suggesting that they form the core of the GPI-T. Details about the assembly and organization of these subunits have been slow to emerge. We have previously shown that the soluble domain of S. cerevisiae Gpi8 (Gpi823-306) assembles as a homodimer, similar to the caspases with which it shares weak sequence homology (Meitzler, J. L. et al., 2007). Here we present the characterization of a complex between the soluble domains of Gpi8 and Gaa1. The complex between GST-Gpi823-306 (α) and His6-Gaa150-343 (ß) was characterized by native gel analysis and size exclusion chromatography (SEC) and results are most consistent with an α2ß2 stoichiometry. These results demonstrate that Gpi8 and Gaa1 interact specifically without a requirement for other subunits, bring us closer to determining the stoichiometry of the core subunits of GPI-T, and lend further credence to the hypothesis that these three subunits assemble into a dimer of a trimer.


Asunto(s)
Aminoaciltransferasas/química , Glicoproteínas de Membrana/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Secuencias de Aminoácidos , Aminoaciltransferasas/genética , Aminoaciltransferasas/metabolismo , Sitios de Unión , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Cinética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Solubilidad , Homología Estructural de Proteína , Especificidad por Sustrato , Vibrionaceae/química , Vibrionaceae/enzimología
3.
Science ; 374(6573): eabm4805, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34762488

RESUMEN

Protein-protein interactions play critical roles in biology, but the structures of many eukaryotic protein complexes are unknown, and there are likely many interactions not yet identified. We take advantage of advances in proteome-wide amino acid coevolution analysis and deep-learning­based structure modeling to systematically identify and build accurate models of core eukaryotic protein complexes within the Saccharomyces cerevisiae proteome. We use a combination of RoseTTAFold and AlphaFold to screen through paired multiple sequence alignments for 8.3 million pairs of yeast proteins, identify 1505 likely to interact, and build structure models for 106 previously unidentified assemblies and 806 that have not been structurally characterized. These complexes, which have as many as five subunits, play roles in almost all key processes in eukaryotic cells and provide broad insights into biological function.


Asunto(s)
Aprendizaje Profundo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Mapeo de Interacción de Proteínas , Proteoma/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Aciltransferasas/química , Aciltransferasas/metabolismo , Segregación Cromosómica , Biología Computacional , Simulación por Computador , Reparación del ADN , Evolución Molecular , Recombinación Homóloga , Ligasas/química , Ligasas/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Biosíntesis de Proteínas , Conformación Proteica , Mapas de Interacción de Proteínas , Proteoma/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/química , Ubiquitina/química , Ubiquitina/metabolismo
4.
Mol Omics ; 15(2): 108-116, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30810554

RESUMEN

Small open reading frames (smORFs) encoding polypeptides of less than 100 amino acids in eukaryotes (50 amino acids in prokaryotes) were historically excluded from genome annotation. However, recent advances in genomics, ribosome footprinting, and proteomics have revealed thousands of translated smORFs in genomes spanning evolutionary space. These smORFs can encode functional polypeptides, or act as cis-translational regulators. Herein we review evidence that some smORF-encoded polypeptides (SEPs) participate in stress responses in both prokaryotes and eukaryotes, and that some upstream ORFs (uORFs) regulate stress-responsive translation of downstream cistrons in eukaryotic cells. These studies provide insight into a regulated subclass of smORFs and suggest that at least some SEPs may participate in maintenance of cellular homeostasis under stress.


Asunto(s)
Eucariontes/fisiología , Genoma/genética , Genómica , Sistemas de Lectura Abierta/genética , Péptidos/genética , Eucariontes/genética , Proteómica , Ribosomas/genética , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda