RESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a coronavirus belonging to the beta CoV genus, responsible for SARS in humans, which became known as COVID-19. The emergence of variants of this virus is related to the presence of cases of reinfection, reduced vaccine effectiveness and greater transmission of the virus. Objective: In this study, we evaluated the molecular epidemiology of SARS-CoV-2 lineages circulating in the state of Maranhão. This is a cross-sectional and retrospective epidemiological study of genomic surveillance of SARS-CoV-2. The study comprised of 338 genomes sequenced by the Next Generation Sequencing technique on Illumina's Miseq equipment, submitted to Global Initiative on Sharing Avian Influenza Data, 190 (56.2%) are from samples of female and 148 (43.8%) from male patients. Sequencing performed covered samples of patients aged between 1 and 108 years, with emphasis on the age groups from 30 to 39 years with 15.0% of sequenced genomes and 20 to 29 years with 12.4%. As for the distribution of sequenced genomes by health macro-regions, 285 (84.3%) are from cities in the northern macro-region. We evidenced the circulation of 29 lineages and sub-lineages, four of which belonging to the Delta variant (AY.43, AY.99.1, AY.99.2 and AY.101 responsible for 4.5% of the genomes) and the others belonging to the Omicron variant, with emphasis on: BA.1 and sub-lineages (42.8%); BA.4, BA.5 and sub-lineages (5.3% and 41.1%); the sub-lineages DL.1 and BQ.1 (5% and 2%). A strong genomic surveillance system allows the study of the natural history of the disease, when there is a resurgence of SARS-CoV-2 cases.
Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , Femenino , Masculino , Lactante , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , SARS-CoV-2/genética , Epidemiología Molecular , Brasil/epidemiología , COVID-19/epidemiología , Estudios Transversales , Estudios RetrospectivosRESUMEN
Streptococcus pneumoniae is a bacterium that causes serious infections, including pneumonia. The limited range of available vaccines and the rise of antibiotic-resistant bacteria mean that new treatments are needed. This study looked at the potential of quercetin as an antimicrobial agent against S. pneumoniae in both isolation and in biofilms. The researchers used microdilution tests, checkerboard assays, and death curve assays, as well as in silico and in vitro cytotoxicity evaluations. They found that quercetin at a concentration of 125.0 µg/mL had both inhibitory and bactericidal effects against S. pneumoniae, and these effects were increased when quercetin was combined with ampicillin. Quercetin also reduced the growth of pneumococcal biofilms. In addition, quercetin (absence or in combination with ampicillin) reduced the death time of Tenebrio molitor larvae compared to the infection control. The study also demonstrated that quercetin had low toxicity in both in silico and in vivo assays, suggesting that it could be a promising treatment for infections caused by S. pneumoniae.
Asunto(s)
Antiinfecciosos , Infecciones Neumocócicas , Humanos , Streptococcus pneumoniae , Quercetina/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinfecciosos/farmacología , Ampicilina/farmacología , Pruebas de Sensibilidad Microbiana , Infecciones Neumocócicas/tratamiento farmacológico , Infecciones Neumocócicas/microbiologíaRESUMEN
Vernonanthura brasiliana (L.) H. Rob is a medicinal plant used for the treatment of several infections. This study aimed to evaluate the antileishmanial activity of V. brasiliana leaves using in vitro and in silico approaches. The chemical composition of V. brasiliana leaf extract was determined through liquid chromatography-mass spectrometry (LC-MS). The inhibitory activity against Leishmania amazonensis promastigote was evaluated by the MTT method. In silico analysis was performed using Lanosterol 14alpha-demethylase (CYP51) as the target. The toxicity analysis was performed in RAW 264.7 cells and Tenebrio molitor larvae. LC-MS revealed the presence of 14 compounds in V. brasiliana crude extract, including flavonoids, flavones, sesquiterpene lactones, and quinic acids. Eriodictol (ΔGbind = -9.0), luteolin (ΔGbind = -8.7), and apigenin (ΔGbind = -8.6) obtained greater strength of molecular interaction with lanosterol demethylase in the molecular docking study. The hexane fraction of V. brasiliana showed the best leishmanicidal activity against L. amazonensis in vitro (IC50 12.44 ± 0.875 µg·mL-1) and low cytotoxicity in RAW 264.7 cells (CC50 314.89 µg·mL-1, SI = 25.30) and T. molitor larvae. However, the hexane fraction and Amphotericin-B had antagonistic interaction (FICI index ≥ 4.0). This study revealed that V. brasiliana and its metabolites are potential sources of lead compounds for drugs for leishmaniasis treatment.
RESUMEN
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic in Brazil was dominated by two lineages designated as B.1.1.28 and B.1.1.33. The two SARS-CoV-2 variants harboring mutations at the receptor-binding domain of the Spike (S) protein, designated as lineages P.1 and P.2, evolved from lineage B.1.1.28 and are rapidly spreading in Brazil. Lineage P.1 is considered a Variant of Concern (VOC) because of the presence of multiple mutations in the S protein (including K417T, E484K, N501Y), while lineage P.2 only harbors mutation S:E484K and is considered a Variant of Interest (VOI). On the other hand, epidemiologically relevant B.1.1.33 deriving lineages have not been described so far. Here we report the identification of a new SARS-CoV-2 VOI within lineage B.1.1.33 that also harbors mutation S:E484K and was detected in Brazil between November 2020 and February 2021. This VOI displayed four non-synonymous lineage-defining mutations (NSP3:A1711V, NSP6:F36L, S:E484K, and NS7b:E33A) and was designated as lineage N.9. The VOI N.9 probably emerged in August 2020 and has spread across different Brazilian states from the Southeast, South, North, and Northeast regions.
Asunto(s)
COVID-19/epidemiología , COVID-19/virología , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Brasil/epidemiología , Genoma Viral , Humanos , Epidemiología Molecular , Unión Proteica , SARS-CoV-2/aislamiento & purificaciónRESUMEN
Mutations at both the receptor-binding domain (RBD) and the amino (N)-terminal domain (NTD) of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike (S) glycoprotein can alter its antigenicity and promote immune escape. We identified that SARS-CoV-2 lineages circulating in Brazil with mutations of concern in the RBD independently acquired convergent deletions and insertions in the NTD of the S protein, which altered the NTD antigenic-supersite and other predicted epitopes at this region. Importantly, we detected the community transmission of different P.1 lineages bearing NTD indels ∆69-70 (which can impact several SARS-CoV-2 diagnostic protocols), ∆144 and ins214ANRN, and a new VOI N.10 derived from the B.1.1.33 lineage carrying three NTD deletions (∆141-144, ∆211, and ∆256-258). These findings support that the ongoing widespread transmission of SARS-CoV-2 in Brazil generates new viral lineages that might be more resistant to antibody neutralization than parental variants of concern.
RESUMEN
Kidney involvement appears to be frequent in coronavirus disease 2019 (COVID-19). Despite this, information concerning renal involvement in COVID-19 is still scarce. Several mechanisms appear to be involved in the complex relationship between the virus and the kidney. Also, different morphological patterns have been described in the kidneys of patients with COVID-19. For some authors, however, this association may be just a coincidence. To investigate this issue, we propose assessing renal morphology associated with COVID-19 at the renal pathology reference center of federal university hospitals in Brazil. Data will come from a consortium involving 17 federal university hospitals belonging to Empresa Brasileira de Serviços Hospitalares (EBSERH) network, as well as some state hospitals and an autopsy center. All biopsies will be sent to the referral center for renal pathology of the EBSERH network. The data will include patients who had coronavirus disease, both alive and deceased, with or without pre-existing kidney disease. Kidney biopsies will be analyzed by light, fluorescence, and electron microscopy. Furthermore, immunohistochemical (IHC) staining for various inflammatory cells (i.e., cells expressing CD3, CD20, CD4, CD8, CD138, CD68, and CD57) as well as angiotensin-converting enzyme 2 (ACE2) will be performed on paraffinized tissue sections. In addition to ultrastructural assays, in situ hybridization (ISH), IHC and reverse transcription-polymerase chain reaction (RT-PCR) will be used to detect Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) in renal tissue. For the patients diagnosed with Collapsing Glomerulopathy, peripheral blood will be collected for apolipoprotein L-1 (APOL1) genotyping. For patients with thrombotic microangiopathy, thrombospondin type 1 motif, member 13 (ADAMTS13), antiphospholipid, and complement panel will be performed. The setting of this study is Brazil, which is second behind the United States in highest confirmed cases and deaths. With this complete approach, we hope to help define the spectrum and impact, whether immediate or long-term, of kidney injury caused by SARS-CoV-2.
RESUMEN
The aim of this study was to determine the effects of resistance training on the immunologic response, body composition, tumor necrosis factor-alpha (TNF-alpha) gene expression obtained from blood leukocytes, and the cytokines interleukin-6, TNF-alpha, and C-reactive protein (CRP), in the elderly women (mean age 63 ± 2 y). A randomized controlled trial was performed using a bi-set training method for eight weeks in nineteen elderly women. Peripheral blood samples were collected by puncture in pretraining (Pre) and posttraining (Post) moments. In the resistance training group, there was a statistically significant decrease from 38.43 ± 9.48 pg/mL to 11.76 ± 5.19 pg/mL (p=0.01) in the serum levels of interleukin-6. Considering serum levels of TNF-alpha, there was a statistically significant difference, comparing the resistance training group at Pre (66.27 ± 10.31 pg/mL) and Post (37.85 ± 9.05 pg/mL) moments (p=0.01). In molecular analysis of TNF-alpha gene expression, there was a statistically significant decrease (p=0.007) between Pre (0.010 ± 0.01 ng/ml) and Post (0.0002 ± 0.0001 ng/ml) moments. Among CRP data, in the resistance training group, there was a statistically significant reduction, between Pre (2.04 ± 0.32 mg/L) and Post (0.90 ± 0.22 mg/L) moments (p=0.001). In the Control group, there was no statistical significance between these two moments. Therefore, the resistance training demonstrated changes in the TNF-alpha gene expression in elderly women, as well as decreased serum levels of interleukin-6, TNF-alpha, and CRP. Such conditions may be related to immune modulation and anti-inflammatory effects, since resistance training releases cytokines, especially interleukin-6, which acts as a TNF-alpha antagonist during exercise.
RESUMEN
The incidence of infections caused by rapidly growing mycobacteria (RGM), especially Mycobacterium abscessus subsp. massiliense (Mabs), is increasing worldwide. Severe infections are associated with abscess formation and strong inflammatory response. This study evaluated the antimicrobial and anti-inflammatory activities of a hydroalcoholic extract (BoHE) and ethyl acetate fraction (BoEA) of Bixa orellana leaves. Antimicrobial activity was evaluated by broth microdilution to determine the minimum inhibitory (MIC) and the minimum bactericidal (MBC) concentrations. Cytotoxicity was evaluated using erythrocytes and RAW 264.7 cells. Nitric oxide (NO) was assayed in stimulated RAW 264.7 cells, and inflammatory cell migration and acute toxicity were evaluated in a Mabs-induced peritonitis mouse model. The compounds present in BoEA were identified by high performance liquid chromatography and mass spectrometry (HPLC-MS). The MIC and MBC values were 2.34 mg/mL and 37.5 mg/mL for BoHE and 0.39 mg/mL and 6.25 mg/mL for BoEA. The extracts did not induce significant toxicity in erythrocytes and RAW 264.7 cells. High levels of NO induced by Mabs were decreased by treatment with both extracts. The anti-inflammatory activity was confirmed in vivo by significant reduction of the cell migration to the peritoneum following BoHE and BoEA pretreatment. Animals treated with BoHE or BoEA did not show signs of acute toxicity in stomach, liver, and kidney. The chemical characterization of BoEA (the most active extract) revealed that kaempferol-3-O-coumaroyl glucose is its major component. The extract of B. orellana may be effective for treating infections caused by Mabs.
RESUMEN
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic in Brazil was dominated by two lineages designated as B.1.1.28 and B.1.1.33. The two SARS-CoV-2 variants harboring mutations at the receptor-binding domain of the Spike (S) protein, designated as lineages P.1 and P.2, evolved from lineage B.1.1.28 and are rapidly spreading in Brazil. Lineage P.1 is considered a Variant of Concern (VOC) because of the presence of multiple mutations in the S protein (including K417T, E484K, N501Y), while lineage P.2 only harbors mutation S:E484K and is considered a Variant of Interest (VOI). On the other hand, epidemiologically relevant B.1.1.33 deriving lineages have not been described so far. Here we report the identification of a new SARS-CoV-2 VOI within lineage B.1.1.33 that also harbors mutation S:E484K and was detected in Brazil between November 2020 and February 2021. This VOI displayed four non-synonymous lineage-defining mutations (NSP3:A1711V, NSP6:F36L, S:E484K, and NS7b:E33A) and was designated as lineage N.9. The VOI N.9 probably emerged in August 2020 and has spread across different Brazilian states from the Southeast, South, North, and Northeast regions.
Asunto(s)
Proteínas , SARS-CoV-2 , MutaciónRESUMEN
BACKGROUND: The aim of this study was to identify novel candidate biomarker proteins differentially expressed in the plasma of patients with early stage acute myocardial infarction (AMI) using SELDI-TOF-MS as a high throughput screening technology. METHODS: Ten individuals with recent acute ischemic-type chest pain (<12 h duration) and ST-segment elevation AMI (1STEMI) and after a second AMI (2STEMI) were selected. Blood samples were drawn at six times after STEMI diagnosis. The first stage (T0) was in Emergency Unit before receiving any medication, the second was just after primary angioplasty (T2), and the next four stages occurred at 12 h intervals after T0. Individuals (n=7) with similar risk factors for cardiovascular disease and normal ergometric test were selected as a control group (CG). Plasma proteomic profiling analysis was performed using the top-down (i.e. intact proteins) SELDI-TOF-MS, after processing in a Multiple Affinity Removal Spin Cartridge System (Agilent). RESULTS: Compared with the CG, the 1STEMI group exhibited 510 differentially expressed protein peaks in the first 48 h after the AMI (p<0.05). The 2STEMI group, had ~85% fewer differently expressed protein peaks than those without previous history of AMI (76, p<0.05). Among the 16 differentially-regulated protein peaks common to both STEMI cohorts (compared with the CG at T0), 6 peaks were persistently down-regulated at more than one time-stage, and also were inversed correlated with serum protein markers (cTnI, CK and CKMB) during 48 h-period after IAM. CONCLUSIONS: Proteomic analysis by SELDI-TOF-MS technology combined with bioinformatics tools demonstrated differential expression during a 48 h time course suggests a potential role of some of these proteins as biomarkers for the very early stages of AMI, as well as for monitoring early cardiac ischemic recovery.