Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Mar Drugs ; 22(3)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38535458

RESUMEN

The venom of cone snails has been proven to be a rich source of bioactive peptides that target a variety of ion channels and receptors. α-Conotoxins (αCtx) interact with nicotinic acetylcholine receptors (nAChRs) and are powerful tools for investigating the structure and function of the various nAChR subtypes. By studying how conotoxins interact with nAChRs, we can improve our understanding of these receptors, leading to new insights into neurological diseases associated with nAChRs. Here, we describe the discovery and characterization of a novel conotoxin from Conus ateralbus, αCtx-AtIA, which has an amino acid sequence homologous to the well-described αCtx-PeIA, but with a different selectivity profile towards nAChRs. We tested the synthetic αCtx-AtIA using the calcium imaging-based Constellation Pharmacology assay on mouse DRG neurons and found that αCtx-AtIA significantly inhibited ACh-induced calcium influx in the presence of an α7 positive allosteric modulator, PNU-120596 (PNU). However, αCtx-AtIA did not display any activity in the absence of PNU. These findings were further validated using two-electrode voltage clamp electrophysiology performed on oocytes overexpressing mouse α3ß4, α6/α3ß4 and α7 nAChRs subtypes. We observed that αCtx-AtIA displayed no or low potency in blocking α3ß4 and α6/α3ß4 receptors, respectively, but improved potency and selectivity to block α7 nAChRs when compared with αCtx-PeIA. Through the synthesis of two additional analogs of αCtx-AtIA and subsequent characterization using Constellation Pharmacology, we were able to identify residue Trp18 as a major contributor to the activity of the peptide.


Asunto(s)
Conotoxinas , Caracol Conus , Receptores Nicotínicos , Animales , Ratones , Calcio , Secuencia de Aminoácidos , Receptor Nicotínico de Acetilcolina alfa 7
2.
Mar Drugs ; 17(8)2019 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-31344776

RESUMEN

Conus ateralbus is a cone snail endemic to the west side of the island of Sal, in the Cabo Verde Archipelago off West Africa. We describe the isolation and characterization of the first bioactive peptide from the venom of this species. This 30AA venom peptide is named conotoxin AtVIA (δ-conotoxin-like). An excitatory activity was manifested by the peptide on a majority of mouse lumbar dorsal root ganglion neurons. An analog of AtVIA with conservative changes on three amino acid residues at the C-terminal region was synthesized and this analog produced an identical effect on the mouse neurons. AtVIA has homology with δ-conotoxins from other worm-hunters, which include conserved sequence elements that are shared with δ-conotoxins from fish-hunting Conus. In contrast, there is no comparable sequence similarity with δ-conotoxins from the venoms of molluscivorous Conus species. A rationale for the potential presence of δ-conotoxins, that are potent in vertebrate systems in two different lineages of worm-hunting cone snails, is discussed.


Asunto(s)
Conotoxinas/química , Caracol Conus/química , Aminoácidos/genética , Animales , Cabo Verde , Conotoxinas/farmacocinética , Secuencia Conservada/genética , Femenino , Ganglios Espinales/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Péptidos/química , Péptidos/genética , Péptidos/farmacocinética , Filogenia
3.
J Biol Chem ; 289(1): 423-36, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24194520

RESUMEN

Trypanosoma cruzi trans-sialidase (TcTS) is a key target protein for Chagas disease chemotherapy. In this study, we investigated the implications of active site flexibility on the biochemical mechanism of TcTS. Molecular dynamics studies revealed remarkable plasticity in the TcTS catalytic site, demonstrating, for the first time, how donor substrate engagement with the enzyme induces an acceptor binding site in the catalytic pocket that was not previously captured in crystal structures. Furthermore, NMR data showed cooperative binding between donor and acceptor substrates, supporting theoretical results. In summary, our data put forward a coherent dynamic framework to understand how a glycosidase evolved its highly efficient trans-glycosidase activity.


Asunto(s)
Evolución Molecular , Simulación de Dinámica Molecular , Proteínas Protozoarias/química , Trypanosoma cruzi/enzimología , Catálisis , Dominio Catalítico , Glicoproteínas , Neuraminidasa , Resonancia Magnética Nuclear Biomolecular , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Trypanosoma cruzi/genética
4.
Glycobiology ; 23(4): 438-52, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23263200

RESUMEN

The glycobiology of the cestodes, a class of parasitic flatworms, is still largely unexplored. An important cestode species is Echinococcus granulosus, the tissue-dwelling larval stage of which causes hydatid disease. The E. granulosus larva is protected from the host by a massive mucin-based extracellular matrix termed laminated layer (LL). We previously reported ( Díaz et al. 2009. Biochemistry 48:11678-11691) the molecular structure of the most abundant LL O-glycans, comprising up to six monosaccharide residues. These are based on Cores 1 and 2, in cases elongated by a chain of Galpß1-3 residues, which can be capped by Galpα1-4. In addition, the Core 2 GlcNAcp residue can be decorated with the Galpα1-4Galpß1-4 disaccharide. Larger glycans also detected contained additional HexNAc residues that could not be explained by the structural repertoire described above. In this work, we elucidate, by mass spectrometry (MS) and nuclear magnetic resonance (NMR), six additional glycans from the E. granulosus LL between six and eight residues in size. Their structures are related to those already described but in cases bear GlcNAcpß1-6 or Galpα1-4Galpß1-4GlcNAcpß1-6 as ramifications on the core Galpß1-3 residue. We also obtained evidence that noncore Galpß1-3 residues can be similarly ramified. Thus, the new motif together with the previous information may explain all the glycan compositions detected in the LL by MS. In addition, we show that the anti-Echinococcus monoclonal antibody E492 (Parasite Immunol 21:141, 1999) recognizes Galpα1-4Galpß1-4GlcNAcp (the blood P(1)-antigen motif). This explains the antibody's reactivity with a range of Echinococcus tissues, as the P(1)-motif is also carried on non-LL N-glycans and glycolipids from this genus.


Asunto(s)
Echinococcus granulosus/química , Polisacáridos/química , Animales , Conformación de Carbohidratos , Globósidos/inmunología , Monosacáridos/química , Polisacáridos/inmunología
5.
Biochem J ; 441(1): 95-104, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21880019

RESUMEN

Cellulases participate in a number of biological events, such as plant cell wall remodelling, nematode parasitism and microbial carbon uptake. Their ability to depolymerize crystalline cellulose is of great biotechnological interest for environmentally compatible production of fuels from lignocellulosic biomass. However, industrial use of cellulases is somewhat limited by both their low catalytic efficiency and stability. In the present study, we conducted a detailed functional and structural characterization of the thermostable BsCel5A (Bacillus subtilis cellulase 5A), which consists of a GH5 (glycoside hydrolase 5) catalytic domain fused to a CBM3 (family 3 carbohydrate-binding module). NMR structural analysis revealed that the Bacillus CBM3 represents a new subfamily, which lacks the classical calcium-binding motif, and variations in NMR frequencies in the presence of cellopentaose showed the importance of polar residues in the carbohydrate interaction. Together with the catalytic domain, the CBM3 forms a large planar surface for cellulose recognition, which conducts the substrate in a proper conformation to the active site and increases enzymatic efficiency. Notably, the manganese ion was demonstrated to have a hyper-stabilizing effect on BsCel5A, and by using deletion constructs and X-ray crystallography we determined that this effect maps to a negatively charged motif located at the opposite face of the catalytic site.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/metabolismo , Celulasas/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Calcio/metabolismo , Celulasas/química , Celulasas/genética , Clonación Molecular , Regulación Bacteriana de la Expresión Génica/fisiología , Calor , Cinética , Manganeso/química , Modelos Moleculares , Conformación Proteica , Estructura Terciaria de Proteína , Especificidad por Sustrato
6.
Front Pharmacol ; 12: 655981, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054536

RESUMEN

Venomous molluscs (Superfamily Conoidea) comprise a substantial fraction of tropical marine biodiversity (>15,000 species). Prior characterization of cone snail venoms established that bioactive venom components used to capture prey, defend against predators and for competitive interactions were relatively small, structured peptides (10-35 amino acids), most with multiple disulfide crosslinks. These venom components ("conotoxins, conopeptides") have been widely studied in many laboratories, leading to pharmaceutical agents and probes. In this review, we describe how it has recently become clear that to varying degrees, cone snail venoms also contain bioactive non-peptidic small molecule components. Since the initial discovery of genuanine as the first bioactive venom small molecule with an unprecedented structure, a broad set of cone snail venoms have been examined for non-peptidic bioactive components. In particular, a basal clade of cone snails (Stephanoconus) that prey on polychaetes produce genuanine and many other small molecules in their venoms, suggesting that this lineage may be a rich source of non-peptidic cone snail venom natural products. In contrast to standing dogma in the field that peptide and proteins are predominantly used for prey capture in cone snails, these small molecules also contribute to prey capture and push the molecular diversity of cone snails beyond peptides. The compounds so far characterized are active on neurons and thus may potentially serve as leads for neuronal diseases. Thus, in analogy to the incredible pharmacopeia resulting from studying venom peptides, these small molecules may provide a new resource of pharmacological agents.

7.
Chemosphere ; 263: 128029, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33297050

RESUMEN

Pyriproxyfen is an insecticide used worldwide that acts as a biomimetic of juvenile hormone. This study investigated metabolic and synaptic impairments triggered by pyriproxyfen using zebrafish acetylcholinesterase (zbAChE) and mitochondria as markers. A brain zbAChE assay was performed in vitro and in vivo covering a range of pyriproxyfen concentrations (0.001-10 µmol/L) to assess inhibition kinetics. Docking simulations were performed to characterize inhibitory interactions. Zebrafish male adults were acutely exposed to 0.001, 0.01 and 0.1 µg/mL pyriproxyfen for 16 h. Mitochondrial respiration of brain tissues was assessed. ROS generation was estimated using H2DCF-DA and MitoSOX. Calcium transport was monitored by Calcium Green™ 5 N. NO synthesis activity was estimated using DAF-FM-DA. Brain acetylcholinesterase showed an in vivo IC20 of 0.30 µmol/L pyriproxyfen, and an IC50 of 92.5 µmol/L. The inhibitory effect on zbAChE activity was competitive-like. Respiratory control of Complex I/II decreased significantly after insecticide exposure. The MitoSOX test showed that O2- generation had a pyriproxyfen dose-dependent effect. Brain tissue lost 50% of Ca2+ uptake capacity at 0.1 µg/mL pyriproxyfen. Ca2+ release showed a clear mitochondrial impairment at lower pyriproxyfen exposures. Thus, Ca2+ transport imbalance caused by pyriproxyfen may be a novel deleterious mechanism of action. Overall, the results showed that pyriproxyfen can compromise multiple and interconnected pathways: (1) zbAChE impairment and (2) the functioning of the electron transport chain, ROS generation and calcium homeostasis in zebrafish brain mitochondria. Considering the many similarities between zebrafish and human, more caution is needed when pyriproxyfen is used in both urban and agricultural pest control.


Asunto(s)
Acetilcolinesterasa , Pez Cebra , Acetilcolinesterasa/metabolismo , Animales , Encéfalo/metabolismo , Humanos , Masculino , Mitocondrias/metabolismo , Piridinas , Pez Cebra/metabolismo
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 252: 119511, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33561686

RESUMEN

The plant popularly known as "negramina" (Siparuna guianensis Aubl.), member of the family Siparunaceae produces an essential oil that presents several biological activities reported in literature. Here, the essential oil was obtained by hydrodistillation from fresh leaves collected in the state of Roraima, far north of the Amazon. Chemical composition of the essential oil was characterized by gas chromatography coupled to mass spectrometry (GC-MS) and flame ionization detector (GC-FID). The sesquiterpenoid shyobunone and its derivatives were identified as major compounds in the oil (>40%). The effect of S. guianensis essential oil on the acetylcholinesterase (AChE) activity from Crassostrea rhizophorae, Litopenaeus vannamei and Electrophorus electricus was tested by spectrophotometric assays. The essential oil has been identified as an AChE inhibitor. The mechanism of inhibition was investigated as well as spectrofluorimetric interactions between the essential oil and the enzyme. 1H NMR titration and molecular docking were also investigated. The spectrophotometric results revealed that shyobunone and its derivatives strongly interact with AChE with a kind of non-competitive inhibition. Interaction studies support the results of enzyme inhibition. Molecular coupling predicted that iso-shyobunone is the strongest ligand, corroborated by fluorescence suppression and 1H NMR titration results. In conclusion, Siparuna guianensis essential oil can be a new source of shyobunone and derivatives capable to reversibly inhibit AChE showing potential neuroprotective properties to be applied in the treatment of Alzheimer's disease.


Asunto(s)
Aceites Volátiles , Sesquiterpenos , Cromatografía de Gases y Espectrometría de Masas , Simulación del Acoplamiento Molecular , Aceites Volátiles/farmacología , Hojas de la Planta , Sesquiterpenos/farmacología
9.
Carbohydr Polym ; 207: 266-275, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30600009

RESUMEN

The ability of erythrocytes, infected by Plasmodium falciparum, to adhere to endothelial cells (cytoadherence) and to capture uninfected erythrocyte (rosetting) is the leading cause of death by severe malaria. Evidences link the binding of the adhesin Duffy Binding Like1-α (DBL1α) domain to the ABH histo-blood antigens with formation of rosettes. Inspired by this very close relationship between the disease susceptibility and individual blood type, here we investigate the structural requirements involved in the interaction of DBL1α with A, B and H histo-blood determinants and their subtypes. Our results evidence the high preference of DBL1α to A epitopes, in comparison to B and H epitopes. DBL1α interacts with ABH epitopes in subtype specific manner, presenting a remarkable affinity for type 2 structures, Fucα1-2Galß1-4GlcNAcß1, particularly the A2 epitope. The contacts made by DBL1α binding pocket and the ABH histo-blood groups were mapped by theoretical methods and supported by NMR experiments.

10.
J Magn Reson ; 181(1): 126-34, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16644249

RESUMEN

The limits of polarization transfer efficiency are explored for systems consisting of three isotropically coupled spins 1/2 in the absence of relaxation. An idealized free evolution and control Hamiltonian is studied, which provides an upper limit of transfer efficiency (in terms of transfer amplitude and transfer time) for realistic homonuclear spin systems with arbitrary Heisenberg-type coupling constants J12, J13, and J23. It is shown that optimal control based pulse sequences have significantly improved transfer efficiencies compared to conventional transfer schemes. An experimental demonstration of optimal polarization transfer is given for the case of the carbon spin system of fully 13C labelled alanine at 62.5 MHz Larmor frequency.


Asunto(s)
Alanina/química , Resonancia Magnética Nuclear Biomolecular/métodos , Algoritmos , Isótopos de Carbono
11.
Org Lett ; 17(20): 4933-5, 2015 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-26421741

RESUMEN

Cone snails are renowned for producing peptide-based venom, containing conopeptides and conotoxins, to capture their prey. A novel small-molecule guanine derivative with unprecedented features, genuanine, was isolated from the venom of two cone snail species. Genuanine causes paralysis in mice, indicating that small molecules and not just polypeptides may contribute to the activity of cone snail venom.


Asunto(s)
Caracol Conus/química , Guanina/química , Guanina/aislamiento & purificación , Animales , Guanina/análogos & derivados , Guanina/farmacología , Isomerismo , Ratones , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Parálisis/inducido químicamente
12.
Dalton Trans ; 43(14): 5435-42, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24522452

RESUMEN

The reaction between cucurbit[6]uril (CB[6]) and lanthanide chlorides (Eu, Sm, Tb and Tm) in acidic aqueous media led to four new structures. The compounds obtained are isostructural with general formula [Ln2(H2O)12(H2O@CB[6])]Cl6(H2O)4 (Ln = Eu(3+) (1), Sm(3+) (2), Tb(3+) (3) and Tm(3+) (4)) and crystallize in the P21/c space group. For the complexes with Eu(3+), Sm(3+) and Tb(3+), the luminescent properties in the solid state and aqueous media were explored and all spectroscopic observations are in excellent agreement with the single crystal structure data. The excitation and emission spectra show the typical f-f transitions characteristic of the trivalent lanthanide ions. The transitions (7)FJ ← (5)D1 (J = 0,1,2) in the europium compound and (7)FJ ← (5)D4 (J = 0,1,2) in the terbium compound, not yet reported in lanthanide-CB[n] compounds, were also observed.

13.
J Magn Reson ; 228: 16-31, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23333616

RESUMEN

We present highly robust, optimal control-based shaped pulses designed to replace all 90° and 180° hard pulses in a given pulse sequence for improved performance. Special attention was devoted to ensuring that the pulses can be simply substituted in a one-to-one fashion for the original hard pulses without any additional modification of the existing sequence. The set of four pulses for each nucleus therefore consists of 90° and 180° point-to-point (PP) and universal rotation (UR) pulses of identical duration. These 1ms pulses provide uniform performance over resonance offsets of 20kHz ((1)H) and 35kHz ((13)C) and tolerate reasonably large radio frequency (RF) inhomogeneity/miscalibration of ±15% ((1)H) and ±10% ((13)C), making them especially suitable for NMR of small-to-medium-sized molecules (for which relaxation effects during the pulse are negligible) at an accessible and widely utilized spectrometer field strength of 600MHz. The experimental performance of conventional hard-pulse sequences is shown to be greatly improved by incorporating the new pulses, each set referred to as the Fantastic Four (Fanta4).


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Procesamiento de Señales Asistido por Computador , Algoritmos , Calibración , Formiatos/química , Humanos , Terpenos/química
14.
PLoS One ; 8(10): e76602, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24116125

RESUMEN

Cytoskeleton and protein trafficking processes, including vesicle transport to synapses, are key processes in neuronal differentiation and axon outgrowth. The human protein FEZ1 (fasciculation and elongation protein zeta 1 / UNC-76, in C. elegans), SCOCO (short coiled-coil protein / UNC-69) and kinesins (e.g. kinesin heavy chain / UNC116) are involved in these processes. Exploiting the feature of FEZ1 protein as a bivalent adapter of transport mediated by kinesins and FEZ1 protein interaction with SCOCO (proteins involved in the same path of axonal growth), we investigated the structural aspects of intermolecular interactions involved in this complex formation by NMR (Nuclear Magnetic Resonance), cross-linking coupled with mass spectrometry (MS), SAXS (Small Angle X-ray Scattering) and molecular modelling. The topology of homodimerization was accessed through NMR (Nuclear Magnetic Resonance) studies of the region involved in this process, corresponding to FEZ1 (92-194). Through studies involving the protein in its monomeric configuration (reduced) and dimeric state, we propose that homodimerization occurs with FEZ1 chains oriented in an anti-parallel topology. We demonstrate that the interaction interface of FEZ1 and SCOCO defined by MS and computational modelling is in accordance with that previously demonstrated for UNC-76 and UNC-69. SAXS and literature data support a heterotetrameric complex model. These data provide details about the interaction interfaces probably involved in the transport machinery assembly and open perspectives to understand and interfere in this assembly and its involvement in neuronal differentiation and axon outgrowth.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Sitios de Unión/genética , Transporte Biológico , Proteínas Portadoras/química , Proteínas Portadoras/genética , Humanos , Cinesinas , Espectroscopía de Resonancia Magnética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Dispersión del Ángulo Pequeño , Homología de Secuencia de Aminoácido , Técnicas del Sistema de Dos Híbridos , Difracción de Rayos X
15.
Front Immunol ; 3: 356, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23230438

RESUMEN

Commonly found at the outermost ends of complex carbohydrates in extracellular medium or on outer cell membranes, sialic acids play important roles in a myriad of biological processes. Mammals synthesize sialic acid through a complex pathway, but Trypanosoma cruzi, the agent of Chagas' disease, evolved to obtain sialic acid from its host through a trans-sialidase (TcTS) reaction. Studies of the parasite cell surface architecture and biochemistry indicate that a unique system comprising sialoglycoproteins and sialyl-binding proteins assists the parasite in several functions including parasite survival, infectivity, and host-cell recognition. Additionally, TcTS activity is capable of extensively remodeling host cell glycomolecules, playing a role as virulence factor. This review presents the state of the art of parasite sialobiology, highlighting how the interplay between host and parasite sialic acid helps the pathogen to evade host defense mechanisms and ensure lifetime host parasitism.

16.
J Magn Reson ; 201(1): 7-17, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19695913

RESUMEN

The problem to design efficient heteronuclear decoupling sequences is studied using optimal control methods. A generalized version of the gradient ascent engineering (GRAPE) algorithm is presented that makes it possible to design complex non-periodic decoupling sequences which are characterized by tens of thousands of pulse sequence parameters. In contrast to conventional approaches based on average Hamiltonian theory, the concept of optimal tracking is used: a pulse sequence is designed that steers the evolution of an ensemble of spin systems such that at a series of time points, a specified trajectory of the density operator is tracked as closely as possible. The approach is demonstrated for the case of low-power heteronuclear decoupling in the liquid state for in vivo applications. Compared to conventional sequences, significant gains in decoupling efficiency and robustness with respect to offset and inhomogeneity of the radio-frequency field were found in simulations and experiments.


Asunto(s)
Espectroscopía de Resonancia Magnética/estadística & datos numéricos , Algoritmos , Modelos Químicos , Modelos Estadísticos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda