Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Orphanet J Rare Dis ; 17(1): 407, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36348386

RESUMEN

BACKGROUND: Acid sphingomyelinase deficiency (ASMD) is a lysosomal disorder caused by deficiency of acid sphingomyelinase (ASM) leading to the accumulation of sphingomyelin (SM) in a variety of cell types. Lysosphingomyelin (LysoSM) is the de-acetylated form of SM and it has been shown as a biomarker for ASMD in tissues, plasma, and dried blood spots (DBS) and lysosphingomyelin-509 (LysoSM509) is the carboxylated analogue of LysoSM. High levels of Lysosphingomyelin 509 (LysoSM509) have also been shown in ASMD patients. In this study, we report the utility of the quantification of LysoSM and LysoSM509 in DBS of patients from Latin America with ASMD by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). RESULTS: DBS samples from 14 ASMD patients were compared with 15 controls, and 44 general newborns. All patients had their diagnosis confirmed by the quantification of ASM and the measurement of the activity of chitotriosidase. All patients had significantly higher levels of lysoSM and lysoSM509 compared to controls and general newborns. CONCLUSIONS: The quantification of lysosphingolipids in DBS is a valuable tool for the diagnosis of ASMD patients and lysoSM can be useful in the differential diagnosis with NPC. This method is also valuable in the ASMD newborn screening process.


Asunto(s)
Enfermedad de Niemann-Pick Tipo A , Enfermedades de Niemann-Pick , Recién Nacido , Humanos , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Esfingomielina Fosfodiesterasa
2.
Ann Bot ; 101(4): 579-94, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18230624

RESUMEN

BACKGROUND AND AIMS: West African sorghum (Sorghum bicolor) varieties are generally highly photoperiod-sensitive, which is a necessary adaptation to the variable onset date of the rainy season and the variable dates of sowing in the savannah zone. Depending on sowing date, plants can produce from 12 to >40 leaves on the main culm, with height varying from 1 m to more than 5 m. The present study aimed to better understand the complex phenology of these variables. METHODS: A 2-year series of monthly sowings of three West African sorghum varieties was conducted near Bamako, Mali. Drought stress was avoided by supplemental irrigation. Rate of initiation of primordia at the stem apex was recorded, together with rate of leaf emergence and increase in plant height. KEY RESULTS: Leaf initiation and appearance rates (plastochron(-1) and phyllochron(-1)) were constant for a given sowing date in cases where less than 20 leaves were produced (generally observed with late sowing dates). In contrast, rates were bilinear for early sowing dates, for which plants produced more than 20 leaves. The secondary rates, which occurred from the 20th leaf onwards, were only half of the initial rate. Plastochron and phyllochron showed large variations among sowing dates, and were correlated with the rate of plant height increase. The initial plastochron and phyllochron were positively correlated with soil temperature and negatively correlated with both day length and day-to-day change of day length prevailing at plant emergence, but these factors explained only half of the variation observed. CONCLUSIONS: Although they belong to different genetic groups and have different height and photoperiod sensitivity, the three varieties studied exhibited similar response patterns of development rates among phenological phases and seasons, with the local landrace showing the greatest variation due to its longer vegetative phase and longer stem internodes. The possible adaptive advantages in African savannah environments of bilinear development rates and the associated limitation in height increase are discussed.


Asunto(s)
Biomasa , Variación Genética , Fotoperiodo , Hojas de la Planta/crecimiento & desarrollo , Sorghum/crecimiento & desarrollo , Genotipo , Sorghum/genética , Factores de Tiempo
3.
Theor Appl Genet ; 113(6): 1131-46, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16909280

RESUMEN

Breeding new varieties adapted to low-input agricultural practices is of particular interest in light of current economical and environmental concerns. Improving nitrogen (N) uptake and N utilization efficiency (NUE) are two ways of producing varieties tolerant to low N input. To offer new possibilities to breeders, it is necessary to acquire more knowledge about these two processes. Knowing C and N metabolisms are linked and knowing N uptake is partly explained by root characteristics, we carried out a QTL analysis for traits associated with N uptake and NUE by using both a conceptual model of C/N plant functioning and a root architecture description. A total of 120 lines were selected according to their genotype among 241 doubled haploids derived from two varieties, one N stress tolerant and the other N stress sensitive. They were grown in hydroponic rhizotrons under N-limited nutritional conditions. Initial conditions varied among genotypes; therefore, total root length on day 1 was used to correct traits. Heritabilities ranged from 13 to 84%. Thirty-two QTL were located: 6 associated with root architecture (on chromosomes 4B, 5A, 5D and 7B), 6 associated with model efficiencies (1B, 2B, 6A, 6B, 7A, 7B and 7D) and 20 associated with state variables (1A, 1B, 2B, 4B, 5A, 5B and 6B). The effects of the dwarfing gene Rht-B1 on root traits are discussed, as well as the features of a conceptual plant functioning model, as a useful tool to assess pertinent traits for QTL detection. It is suggested that further studies that couple QTL with a functioning model and a root architecture description could serve in the search for ideotypes.


Asunto(s)
Aclimatación , Carbono/metabolismo , Nitrógeno/metabolismo , Sitios de Carácter Cuantitativo , Estaciones del Año , Triticum/fisiología , Mapeo Cromosómico , Cromosomas de las Plantas , Variación Genética , Genotipo , Modelos Biológicos , Raíces de Plantas/anatomía & histología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Triticum/anatomía & histología , Triticum/genética
4.
J Exp Bot ; 53(370): 809-23, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11912224

RESUMEN

Today farmers have several constraints to take into account in managing their crops: (i) competitiveness: productivity must be maintained or increased whereas inputs must be decreased, (ii) the environmental consequences of cultural practices: pesticide and fertilizer use must be decreased, and (iii) product quality must be improved and nitrogen nutrition is an important factor in harvest quality. These new constraints sometimes conflict: maximum yield is often obtained with large amounts of N, increasing the risks of N leaching. The determination of rates and dates for nitrogen application must become more precise in this context. Tools are required for the forecasting of crop requirements, the diagnosis of N deficiencies during the crop cycle and breeding of new adapted varieties. Models and diagnosis indicators have been developed to meet these needs, but those relating to nitrogen are often based on empirical relationships. Moreover, the available models and indicators often fail to account for cultivar-specific responses. The improvement of agronomic tools and the breeding of new varieties adapted to new cropping systems should be based on a thorough understanding of the key metabolic processes involved, and the relative contributions of these processes to yield determination in conditions of fluctuating N supply. For both purposes, more information is required about plant and crop N economy. In this paper, the way in which N absorption and use within the plant and crop, plant responses to deficiencies and excesses of nitrogen are taken into account in major agronomic models is described first. The level of sophistication of the modules comprising these models depends on operational objectives. Secondly, the ways in which the most recent molecular plant physiology findings can, and indeed should, be integrated into models at the crop and crop cycle levels are described. The potential value of this approach for improving current agronomic models and diagnostic tools, and for breeding more efficient varieties is also discussed.


Asunto(s)
Agricultura , Productos Agrícolas/fisiología , Nitrógeno/metabolismo , Algoritmos , Biomasa , Productos Agrícolas/efectos de los fármacos , Productos Agrícolas/crecimiento & desarrollo , Modelos Biológicos , Nitrógeno/deficiencia , Nitrógeno/farmacología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Suelo/análisis
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda