Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
PLoS Pathog ; 9(6): e1003370, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23754942

RESUMEN

The circadian clock integrates temporal information with environmental cues in regulating plant development and physiology. Recently, the circadian clock has been shown to affect plant responses to biotic cues. To further examine this role of the circadian clock, we tested disease resistance in mutants disrupted in CCA1 and LHY, which act synergistically to regulate clock activity. We found that cca1 and lhy mutants also synergistically affect basal and resistance gene-mediated defense against Pseudomonas syringae and Hyaloperonospora arabidopsidis. Disrupting the circadian clock caused by overexpression of CCA1 or LHY also resulted in severe susceptibility to P. syringae. We identified a downstream target of CCA1 and LHY, GRP7, a key constituent of a slave oscillator regulated by the circadian clock and previously shown to influence plant defense and stomatal activity. We show that the defense role of CCA1 and LHY against P. syringae is at least partially through circadian control of stomatal aperture but is independent of defense mediated by salicylic acid. Furthermore, we found defense activation by P. syringae infection and treatment with the elicitor flg22 can feedback-regulate clock activity. Together this data strongly supports a direct role of the circadian clock in defense control and reveal for the first time crosstalk between the circadian clock and plant innate immunity.


Asunto(s)
Proteínas de Arabidopsis/inmunología , Arabidopsis/inmunología , Relojes Circadianos/inmunología , Proteínas de Unión al ADN/inmunología , Resistencia a la Enfermedad/inmunología , Pseudomonas putida/inmunología , Factores de Transcripción/inmunología , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Relojes Circadianos/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Resistencia a la Enfermedad/genética , Mutación , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Plant Physiol ; 156(3): 1508-19, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21543726

RESUMEN

The salicylic acid (SA) regulatory gene HOPW1-1-INTERACTING3 (WIN3) was previously shown to confer resistance to the biotrophic pathogen Pseudomonas syringae. Here, we report that WIN3 controls broad-spectrum disease resistance to the necrotrophic pathogen Botrytis cinerea and contributes to basal defense induced by flg22, a 22-amino acid peptide derived from the conserved region of bacterial flagellin proteins. Genetic analysis indicates that WIN3 acts additively with several known SA regulators, including PHYTOALEXIN DEFICIENT4, NONEXPRESSOR OF PR GENES1 (NPR1), and SA INDUCTION-DEFICIENT2, in regulating SA accumulation, cell death, and/or disease resistance in the Arabidopsis (Arabidopsis thaliana) mutant acd6-1. Interestingly, expression of WIN3 is also dependent on these SA regulators and can be activated by cell death, suggesting that WIN3-mediated signaling is interconnected with those derived from other SA regulators and cell death. Surprisingly, we found that WIN3 and NPR1 synergistically affect flowering time via influencing the expression of flowering regulatory genes FLOWERING LOCUS C and FLOWERING LOCUS T. Taken together, our data reveal that WIN3 represents a novel node in the SA signaling networks to regulate plant defense and flowering time. They also highlight that plant innate immunity and development are closely connected processes, precise regulation of which should be important for the fitness of plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/inmunología , Flores/fisiología , Inmunidad Innata/inmunología , Luciferasas de Luciérnaga/metabolismo , Enfermedades de las Plantas/inmunología , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Botrytis/efectos de los fármacos , Botrytis/fisiología , Muerte Celular/efectos de los fármacos , Flores/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Luciferasas de Luciérnaga/genética , Modelos Biológicos , Mutación/genética , Péptidos/farmacología , Fenotipo , Fotoperiodo , Enfermedades de las Plantas/microbiología , Hojas de la Planta/citología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Pseudomonas syringae/efectos de los fármacos , Pseudomonas syringae/fisiología , Ácido Salicílico/farmacología , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
3.
Genetics ; 189(3): 851-9, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21900271

RESUMEN

Properly coordinated defense signaling networks are critical for the fitness of plants. One hub of the defense networks is centered on salicylic acid (SA), which plays a key role in activating disease resistance in plants. However, while a number of genes are known to affect SA-mediated defense, relatively little is known about how these gene interact genetically with each other. Here we exploited the unique defense-sensitized Arabidopsis mutant accelerated cell death (acd) 6-1 to dissect functional relationships among key components in the SA hub. We show that while enhanced disease susceptibility (eds) 1-2 and phytoalexin deficient (pad) 4-1 suppressed acd6-1-conferred small size, cell death, and defense phenotypes, a combination of these two mutations did not incur additive suppression. This suggests that EDS1 and PAD4 act in the same signaling pathway. To further evaluate genetic interactions among SA regulators, we constructed 10 pairwise crosses in the acd6-1 background among mutants defective in: SA INDUCTION-DEFICIENT 2 for SA biosynthesis; AGD2-LIKE DEFENSE 1, EDS5, and PAD4 for SA accumulation; and NONEXPRESSOR OF PR GENES 1 for SA signaling. Systematic analysis of the triple mutants based on their suppression of acd6-1-conferred phenotypes revealed complex and interactive genetic relationships among the tested SA genes. Our results suggest a more comprehensive view of the gene networks governing SA function and provide a framework for further interrogation of the important roles of SA and possibly other signaling molecules in regulating plant disease resistance.


Asunto(s)
Arabidopsis/genética , Arabidopsis/fisiología , Resistencia a la Enfermedad/genética , Ácido Salicílico/metabolismo , Transducción de Señal/genética , Arabidopsis/citología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Muerte Celular/genética , Genes de Plantas/genética
4.
Mol Plant ; 4(3): 516-26, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21447757

RESUMEN

The Arabidopsis accelerated cell death 6-1 (acd6-1) mutant shows constitutive defense, cell death, and extreme dwarf phenotypes. In a screen for acd6-1 suppressors, we identified a mutant that was disrupted by a T-DNA in the PHOSPHATE TRANSPORTER 4;1 (PHT4;1) gene. The suppressor mutant pht4;1-1 is dominant, expresses truncated PHT4;1 transcripts, and is more susceptible to virulent Pseudomonas syringae strains but not to several avirulent strains. Treatment with a salicylic acid (SA) agonist induced a similar level of resistance in Col-0 and pht4;1-1, suggesting that PHT4;1 acts upstream of the SA pathway. Genetic analysis further indicates that PHT4;1 contributes to SID2-dependent and -independent pathways. Transgenic expression of the DNA fragment containing the PHT4;1-1 region or the full-length PHT4;1 gene in wild-type conferred enhanced susceptibility to Pseudomonas infection. Interestingly, expression of PHT4;1 is regulated by the circadian clock. Together, these data suggest that the phosphate transporter PHT4;1 is critical for basal defense and also implicate a potential role of the circadian clock in regulating innate immunity of Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Relojes Circadianos , Proteínas de Transporte de Fosfato/metabolismo , Ancirinas/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Relojes Circadianos/efectos de los fármacos , Relojes Circadianos/genética , Relojes Circadianos/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes Dominantes/genética , Luz , Fenotipo , Proteínas de Transporte de Fosfato/genética , Pseudomonas/efectos de los fármacos , Pseudomonas/patogenicidad , Pseudomonas/efectos de la radiación , Ácido Salicílico/farmacología , Supresión Genética/efectos de los fármacos , Supresión Genética/efectos de la radiación , Virulencia/efectos de los fármacos , Virulencia/efectos de la radiación
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda