Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
PLoS Pathog ; 20(2): e1011978, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38324561

RESUMEN

Members of the serine-arginine protein kinase (SRPK) family, SRPK1 and SRPK2, phosphorylate the hepatitis B core protein (Cp) and are crucial for pregenomic RNA encapsidation during viral nucleocapsid assembly. Among them, SRPK2 exhibits higher kinase activity toward Cp. In this study, we identified Cp sites that are phosphorylated by SRPK2 and demonstrated that the kinase utilizes an SRPK-specific docking groove to interact with and regulate the phosphorylation of the C-terminal arginine rich domain of Cp. We determined that direct interaction between the docking groove of SRPK2 and unphosphorylated Cp inhibited premature viral capsid assembly in vitro, whereas the phosphorylation of the viral protein reactivated the process. Pull-down assays together with the new cryo-electron microscopy structure of the HBV capsid in complex with SRPK2 revealed that the kinases decorate the surface of the viral capsid by interacting with the C-terminal domain of Cp, underscoring the importance of the docking interaction in regulating capsid assembly and pregenome packaging. Moreover, SRPK2-knockout in HepG2 cells suppressed Cp phosphorylation, indicating that SRPK2 is an important cellular kinase for HBV life cycle.


Asunto(s)
Cápside , Virus de la Hepatitis B , Fosforilación , Cápside/metabolismo , Virus de la Hepatitis B/metabolismo , Microscopía por Crioelectrón , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de la Cápside/metabolismo , Ensamble de Virus/fisiología , Arginina/metabolismo
2.
Nucleic Acids Res ; 50(13): 7655-7668, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35776134

RESUMEN

Polyglutamine (polyQ) diseases are a type of inherited neurodegenerative disorders caused by cytosine-adenine-guanine (CAG) trinucleotide expansion within the coding region of the disease-associated genes. We previously demonstrated that a pathogenic interaction between expanded CAG RNA and the nucleolin (NCL) protein triggers the nucleolar stress and neuronal cell death in polyQ diseases. However, mechanisms behind the molecular interaction remain unknown. Here, we report a 1.45 Å crystal structure of the r(CAG)5 oligo that comprises a full A'-form helical turn with widened grooves. Based on this structure, we simulated a model of r(CAG)5 RNA complexed with the RNA recognition motif 2 (RRM2) of NCL and identified NCL residues that are critical for its binding to CAG RNA. Combined with in vitro and in vivo site-directed mutagenesis studies, our model reveals that CAG RNA binds to NCL sites that are not important for other cellular functions like gene expression and rRNA synthesis regulation, indicating that toxic CAG RNA interferes with NCL functions by sequestering it. Accordingly, an NCL mutant that is aberrant in CAG RNA-binding could rescue RNA-induced cytotoxicity effectively. Taken together, our study provides new molecular insights into the pathogenic mechanism of polyQ diseases mediated by NCL-CAG RNA interaction.


Asunto(s)
Fosfoproteínas/genética , Proteínas de Unión al ARN/genética , ARN , Repeticiones de Trinucleótidos , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Oligonucleótidos/metabolismo , Péptidos , ARN/genética , Nucleolina
3.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33947817

RESUMEN

DNA damage plays a central role in the cellular pathogenesis of polyglutamine (polyQ) diseases, including Huntington's disease (HD). In this study, we showed that the expression of untranslatable expanded CAG RNA per se induced the cellular DNA damage response pathway. By means of RNA sequencing (RNA-seq), we found that expression of the Nudix hydrolase 16 (NUDT16) gene was down-regulated in mutant CAG RNA-expressing cells. The loss of NUDT16 function results in a misincorporation of damaging nucleotides into DNAs and leads to DNA damage. We showed that small CAG (sCAG) RNAs, species generated from expanded CAG transcripts, hybridize with CUG-containing NUDT16 mRNA and form a CAG-CUG RNA heteroduplex, resulting in gene silencing of NUDT16 and leading to the DNA damage and cellular apoptosis. These results were further validated using expanded CAG RNA-expressing mouse primary neurons and in vivo R6/2 HD transgenic mice. Moreover, we identified a bisamidinium compound, DB213, that interacts specifically with the major groove of the CAG RNA homoduplex and disfavors the CAG-CUG heteroduplex formation. This action subsequently mitigated RNA-induced silencing complex (RISC)-dependent NUDT16 silencing in both in vitro cell and in vivo mouse disease models. After DB213 treatment, DNA damage, apoptosis, and locomotor defects were rescued in HD mice. This work establishes NUDT16 deficiency by CAG repeat RNAs as a pathogenic mechanism of polyQ diseases and as a potential therapeutic direction for HD and other polyQ diseases.


Asunto(s)
Apoptosis/genética , Daño del ADN , Enfermedad de Huntington/genética , Péptidos/genética , Pirofosfatasas/genética , ARN/genética , Expansión de Repetición de Trinucleótido/genética , Animales , Apoptosis/efectos de los fármacos , Benzamidinas/metabolismo , Benzamidinas/farmacología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/prevención & control , Ratones Endogámicos C57BL , Ratones Transgénicos , Simulación de Dinámica Molecular , Pirofosfatasas/metabolismo , ARN/metabolismo , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo
4.
Biochem J ; 477(20): 3935-3949, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-32955089

RESUMEN

The unconventional G-protein OsYchF1 plays regulatory roles in plant defense and abiotic stress responses. We have previously resolved the crystal structures of OsYchF1 and its plant-specific regulator, OsGAP1, and determined the residues on OsGAP1 that are essential for its binding to OsYchF1. In this study, we employed site-directed mutagenesis to identify four critical residues on the TGS domain of OsYchF1 that are critical for its binding to OsGAP1. We also generated a docking model of the OsYchF1 : OsGAP1 complex to dissect the molecular basis of their interactions. Our finding not only reveals the roles of the key interacting residues controlling the binding between OsYchF1 and OsGAP1, but also provides a working model on the potential regulatory mechanism mediated by a TGS domain, particularly in the class of GTPase of the OBG family.


Asunto(s)
Arabidopsis/metabolismo , Dominios C2/genética , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/genética , Proteínas Activadoras de GTPasa/química , Oryza/química , Proteínas de Plantas/química , Secuencia de Aminoácidos , Proteínas de Unión al GTP/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Modelos Estructurales , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Unión Proteica , Dominios Proteicos/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Recombinantes , Estrés Fisiológico/genética
5.
J Biol Chem ; 294(4): 1312-1327, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30478176

RESUMEN

Serine-arginine (SR) proteins are essential splicing factors containing a canonical RNA recognition motif (RRM), sometimes followed by a pseudo-RRM, and a C-terminal arginine/serine-rich (RS) domain that undergoes multisite phosphorylation. Phosphorylation regulates the localization and activity of SR proteins, and thus may provide insight into their differential biological roles. The phosphorylation mechanism of the prototypic SRSF1 by serine-arginine protein kinase 1 (SRPK1) has been well-studied, but little is known about the phosphorylation of other SR protein members. In the present study, interaction and kinetic assays unveiled how SRSF1 and the single RRM-containing SRSF3 are phosphorylated by SRPK2, another member of the SRPK family. We showed that a conserved SRPK-specific substrate-docking groove in SRPK2 impacts the binding and phosphorylation of both SR proteins, and the localization of SRSF3. We identified a nonconserved residue within the groove that affects the kinase processivity. We demonstrated that, in contrast to SRSF1, for which SRPK-mediated phosphorylation is confined to the N-terminal region of the RS domain, SRSF3 phosphorylation sites are spread throughout its entire RS domain in vitro Despite this, SRSF3 appears to be hypophosphorylated in cells at steady state. Our results suggest that the absence of a pseudo-RRM renders the single RRM-containing SRSF3 more susceptible to dephosphorylation by phosphatase. These findings suggest that the single RRM- and two RRM-containing SR proteins represent two subclasses of phosphoproteins in which phosphorylation statuses are maintained by unique mechanisms, and pose new directions to explore the distinct roles of SR proteins in vivo.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Empalme Serina-Arginina/metabolismo , Secuencia de Aminoácidos , Células HEK293 , Humanos , Modelos Moleculares , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Alineación de Secuencia , Factores de Empalme Serina-Arginina/química
6.
J Biol Chem ; 294(1): 372-378, 2019 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30409901

RESUMEN

The ribosomal maturation factor P (RimP) is a highly conserved protein in bacteria and has been shown to be important in ribosomal assembly in Escherichia coli Because of its central importance in bacterial metabolism, RimP represents a good potential target for drug design to combat human pathogens such as Mycobacterium tuberculosis However, to date, the only RimP structure available is the NMR structure of the ortholog in another bacterial pathogen, Streptococcus pneumoniae Here, we report a 2.2 Å resolution crystal structure of MSMEG_2624, the RimP ortholog in the close M. tuberculosis relative Mycobacterium smegmatis, and using in vitro binding assays, we show that MSMEG_2624 interacts with the small ribosomal protein S12, also known as RpsL. Further analyses revealed that the conserved residues in the linker region between the N- and C-terminal domains of MSMEG_2624 are essential for binding to RpsL. However, neither of the two domains alone was sufficient to form strong interactions with RpsL. More importantly, the linker region was essential for in vivo ribosomal biogenesis. Our study provides critical mechanistic insights into the role of RimP in ribosome biogenesis. We anticipate that the MSMEG_2624 crystal structure has the potential to be used for drug design to manage M. tuberculosis infections.


Asunto(s)
Proteínas Bacterianas , Mycobacterium smegmatis , Proteínas Ribosómicas , Ribosomas , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Proteínas de Escherichia coli , Mycobacterium smegmatis/química , Mycobacterium smegmatis/metabolismo , Unión Proteica , Dominios Proteicos , Proteína Ribosómica S9 , Proteínas Ribosómicas/biosíntesis , Proteínas Ribosómicas/química , Ribosomas/química , Ribosomas/metabolismo , Streptococcus pneumoniae/química , Streptococcus pneumoniae/metabolismo
7.
J Biol Chem ; 294(8): 2757-2770, 2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30593503

RESUMEN

Polyglutamine (polyQ) diseases are a group of dominantly inherited neurodegenerative disorders caused by the expansion of an unstable CAG repeat in the coding region of the affected genes. Hallmarks of polyQ diseases include the accumulation of misfolded protein aggregates, leading to neuronal degeneration and cell death. PolyQ diseases are currently incurable, highlighting the urgent need for approaches that inhibit the formation of disaggregate cytotoxic polyQ protein inclusions. Here, we screened for bisamidine-based inhibitors that can inhibit neuronal polyQ protein inclusions. We demonstrated that one inhibitor, AQAMAN, prevents polyQ protein aggregation and promotes de-aggregation of self-assembled polyQ proteins in several models of polyQ diseases. Using immunocytochemistry, we found that AQAMAN significantly reduces polyQ protein aggregation and specifically suppresses polyQ protein-induced cell death. Using a recombinant and purified polyQ protein (thioredoxin-Huntingtin-Q46), we further demonstrated that AQAMAN interferes with polyQ self-assembly, preventing polyQ aggregation, and dissociates preformed polyQ aggregates in a cell-free system. Remarkably, AQAMAN feeding of Drosophila expressing expanded polyQ disease protein suppresses polyQ-induced neurodegeneration in vivo In addition, using inhibitors and activators of the autophagy pathway, we demonstrated that AQAMAN's cytoprotective effect against polyQ toxicity is autophagy-dependent. In summary, we have identified AQAMAN as a potential therapeutic for combating polyQ protein toxicity in polyQ diseases. Our findings further highlight the importance of the autophagy pathway in clearing harmful polyQ proteins.


Asunto(s)
Autofagia , Modelos Animales de Enfermedad , Furanos/farmacología , Cuerpos de Inclusión/patología , Enfermedades Neurodegenerativas/prevención & control , Neuronas/patología , Péptidos/metabolismo , Animales , Citoprotección , Drosophila melanogaster/fisiología , Furanos/química , Humanos , Cuerpos de Inclusión/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Péptidos/química , Ratas
8.
RNA ; 24(4): 486-498, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29295891

RESUMEN

Polyglutamine (polyQ) diseases are a class of progressive neurodegenerative disorders characterized by the expression of both expanded CAG RNA and misfolded polyQ protein. We previously reported that the direct interaction between expanded CAG RNA and nucleolar protein nucleolin (NCL) impedes preribosomal RNA (pre-rRNA) transcription, and eventually triggers nucleolar stress-induced apoptosis in polyQ diseases. Here, we report that a 21-amino acid peptide, named "beta-structured inhibitor for neurodegenerative diseases" (BIND), effectively suppresses toxicity induced by expanded CAG RNA. When administered to a cell model, BIND potently inhibited cell death induced by expanded CAG RNA with an IC50 value of ∼0.7 µM. We showed that the function of BIND is dependent on Glu2, Lys13, Gly14, Ile18, Glu19, and Phe20. BIND treatment restored the subcellular localization of nucleolar marker protein and the expression level of pre-45s rRNA Through isothermal titration calorimetry analysis, we demonstrated that BIND suppresses nucleolar stress via a direct interaction with CAG RNA in a length-dependent manner. The mean binding constants (KD) of BIND to SCA2CAG22 , SCA2CAG42 , SCA2CAG55 , and SCA2CAG72 RNA are 17.28, 5.60, 4.83, and 0.66 µM, respectively. In vivo, BIND ameliorates retinal degeneration and climbing defects, and extends the lifespan of Drosophila expressing expanded CAG RNA. These effects suggested that BIND can suppress neurodegeneration in diverse polyQ disease models in vivo and in vitro without exerting observable cytotoxic effect. Our results collectively demonstrated that BIND is an effective inhibitor of expanded CAG RNA-induced toxicity in polyQ diseases.


Asunto(s)
Enfermedad de Huntington/terapia , Péptidos/farmacología , Deficiencias en la Proteostasis/genética , Ataxias Espinocerebelosas/terapia , Repeticiones de Trinucleótidos/genética , Animales , Muerte Celular/efectos de los fármacos , Drosophila/genética , Células HEK293 , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Péptidos/metabolismo , Fosfoproteínas/genética , Pliegue de Proteína , Deficiencias en la Proteostasis/patología , Deficiencias en la Proteostasis/terapia , ARN Ribosómico/genética , Proteínas de Unión al ARN/genética , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología , Transcripción Genética/genética , Repeticiones de Trinucleótidos/efectos de los fármacos , Nucleolina
9.
FASEB J ; 33(11): 12019-12035, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31373844

RESUMEN

Amyloid-ß (Aß) is derived from the proteolytic processing of amyloid precursor protein (APP), and the deposition of extracellular Aß to form amyloid plaques is a pathologic hallmark of Alzheimer's disease (AD). Although reducing Aß generation and accumulation has been proposed as a means of treating the disease, adverse side effects and unsatisfactory efficacy have been reported in several clinical trials that sought to lower Aß levels. Engulfment adaptor phosphotyrosine-binding (PTB) domain containing 1 (GULP1) is a molecular adaptor that has been shown to interact with APP to alter Aß production. Therefore, the modulation of the GULP1-APP interaction may be an alternative approach to reducing Aß. However, the mechanisms that regulate GULP1-APP binding remain elusive. As GULP1 is a phosphoprotein, and because phosphorylation is a common mechanism that regulates protein interaction, we anticipated that GULP1 phosphorylation would influence GULP1-APP interaction and thereby Aß production. We show here that the phosphorylation of GULP1 threonine 35 (T35) reduces GULP1-APP interaction and suppresses the stimulatory effect of GULP1 on APP processing. The residue is phosphorylated by an isoform of atypical PKC (PKCζ). Overexpression of PKCζ reduces both GULP1-APP interaction and GULP1-mediated Aß generation. Moreover, the activation of PKCζ via insulin suppresses APP processing. In contrast, GULP1-mediated APP processing is enhanced in PKCζ knockout cells. Similarly, PKC ι, another member of atypical PKC, also decreases GULP1-mediated APP processing. Intriguingly, our X-ray crystal structure of GULP1 PTB-APP intracellular domain (AICD) peptide reveals that GULP1 T35 is not located at the GULP1-AICD binding interface; rather, it immediately precedes the ß1-α2 loop that forms a portion of the binding groove for the APP helix αC. Phosphorylating the residue may induce an allosteric effect on the conformation of the binding groove. Our results indicate that GULP1 T35 phosphorylation is a mechanism for the regulation of GULP1-APP interaction and thereby APP processing. Moreover, the activation of atypical PKC, such as by insulin, may confer a beneficial effect on AD by lowering GULP1-mediated Aß production.-Chau, D. D.-L., Yung, K. W.-Y., Chan, W. W.-L., An, Y., Hao, Y., Chan, H.-Y. E., Ngo, J. C.-K., Lau, K.-F. Attenuation of amyloid-ß generation by atypical protein kinase C-mediated phosphorylation of engulfment adaptor PTB domain containing 1 threonine 35.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteína Quinasa C/metabolismo , Procesamiento Proteico-Postraduccional , Treonina/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Células CHO , Línea Celular Tumoral , Cricetulus , Células HEK293 , Humanos , Fosforilación , Unión Proteica
10.
EMBO Rep ; 19(9)2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30026307

RESUMEN

Planar cell polarity (PCP) describes a cell-cell communication process through which individual cells coordinate and align within the plane of a tissue. In this study, we show that overexpression of Fuz, a PCP gene, triggers neuronal apoptosis via the dishevelled/Rac1 GTPase/MEKK1/JNK/caspase signalling axis. Consistent with this finding, endogenous Fuz expression is upregulated in models of polyglutamine (polyQ) diseases and in fibroblasts from spinocerebellar ataxia type 3 (SCA3) patients. The disruption of this upregulation mitigates polyQ-induced neurodegeneration in Drosophila We show that the transcriptional regulator Yin Yang 1 (YY1) associates with the Fuz promoter. Overexpression of YY1 promotes the hypermethylation of Fuz promoter, causing transcriptional repression of Fuz Remarkably, YY1 protein is recruited to ATXN3-Q84 aggregates, which reduces the level of functional, soluble YY1, resulting in Fuz transcriptional derepression and induction of neuronal apoptosis. Furthermore, Fuz transcript level is elevated in amyloid beta-peptide, Tau and α-synuclein models, implicating its potential involvement in other neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Taken together, this study unveils a generic Fuz-mediated apoptotic cell death pathway in neurodegenerative disorders.


Asunto(s)
Apoptosis , Polaridad Celular/genética , Polaridad Celular/fisiología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Adulto , Anciano , Péptidos beta-Amiloides/metabolismo , Animales , Caspasa 3/metabolismo , Proteínas del Citoesqueleto , Modelos Animales de Enfermedad , Proteínas Dishevelled/metabolismo , Drosophila , Femenino , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/fisiología , MAP Quinasa Quinasa 4/metabolismo , Quinasa 1 de Quinasa de Quinasa MAP/metabolismo , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Enfermedades Neurodegenerativas/inducido químicamente , Péptidos/farmacología , Ratas , Factor de Transcripción YY1/genética , alfa-Sinucleína/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteínas tau/metabolismo
11.
J Biol Chem ; 293(20): 7674-7688, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29615491

RESUMEN

Neurite outgrowth is a crucial process in developing neurons for neural network formation. Understanding the regulatory mechanisms of neurite outgrowth is essential for developing strategies to stimulate neurite regeneration after nerve injury and in neurodegenerative disorders. FE65 is a brain-enriched adaptor that stimulates Rac1-mediated neurite elongation. However, the precise mechanism by which FE65 promotes the process remains elusive. Here, we show that ELMO1, a subunit of ELMO1-DOCK180 bipartite Rac1 guanine nucleotide exchange factor (GEF), interacts with the FE65 N-terminal region. Overexpression of FE65 and/or ELMO1 enhances, whereas knockdown of FE65 or ELMO1 inhibits, neurite outgrowth and Rac1 activation. The effect of FE65 alone or together with ELMO1 is attenuated by an FE65 double mutation that disrupts FE65-ELMO1 interaction. Notably, FE65 is found to activate ELMO1 by diminishing ELMO1 intramolecular autoinhibitory interaction and to promote the targeting of ELMO1 to the plasma membrane, where Rac1 is activated. We also show that FE65, ELMO1, and DOCK180 form a tripartite complex. Knockdown of DOCK180 reduces the stimulatory effect of FE65-ELMO1 on Rac1 activation and neurite outgrowth. Thus, we identify a novel mechanism by which FE65 stimulates Rac1-mediated neurite outgrowth by recruiting and activating ELMO1.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Proyección Neuronal/fisiología , Neuronas/citología , Proteínas Nucleares/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Movimiento Celular , Células Cultivadas , Humanos , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Proteínas Nucleares/genética , Ratas , Proteína de Unión al GTP rac1/genética
12.
Mol Pharm ; 15(12): 5781-5792, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30392378

RESUMEN

Polyglutamine diseases are a set of progressive neurodegenerative disorders caused by misfolding and aggregation of mutant CAG RNA and polyglutamin protein. To date, there is a lack of effective therapeutics that can counteract the polyglutamine neurotoxicity. Two peptidylic inhibitors, QBP1 and P3, targeting the protein and RNA toxicities, respectively, have been previously demonstrated by us with combinational therapeutic effects on the Drosophila polyglutamine disease model. However, their therapeutic efficacy has never been investigated in vivo in mammals. The current study aims to (a) develop a brain-targeting delivery system for both QBP1 and L1P3V8 (a lipidated variant of P3 with improved stability) and (b) evaluate their therapeutic effects on the R6/2 transgenic mouse model of polyglutamine disease. Compared with intravenous administration, intranasal administration of QBP1 significantly increased its brain-to-plasma ratio. In addition, employment of a chitosan-containing in situ gel for the intranasal administration of QBP1 notably improved its brain concentration for up to 10-fold. Further study on intranasal cotreatment with the optimized formulation of QBP1 and L1P3V8 in mice found no interference on the brain uptake of each other. Subsequent efficacy evaluation of 4-week daily QBP1 (16 µmol/kg) and L1P3V8 (6 µmol/kg) intranasal cotreatment in the R6/2 mice demonstrated a significant improvement on the motor coordination and explorative behavior of the disease mice, together with a full suppression on the RNA- and protein-toxicity markers in their brains. In summary, the current study developed an efficient intranasal cotreatment of the two peptidylic inhibitors, QBP1 and L1P3V8, for their brain-targeting, and such a novel therapeutic strategy was found to be effective on a transgenic polyglutamine disease mouse model.


Asunto(s)
Proteínas Portadoras/administración & dosificación , Trastornos Heredodegenerativos del Sistema Nervioso/tratamiento farmacológico , Oligopéptidos/administración & dosificación , Péptidos/administración & dosificación , Péptidos/metabolismo , ARN Mensajero/antagonistas & inhibidores , Administración Intranasal , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/metabolismo , Proteínas Portadoras/farmacocinética , Modelos Animales de Enfermedad , Esquema de Medicación , Evaluación Preclínica de Medicamentos , Quimioterapia Combinada/métodos , Trastornos Heredodegenerativos del Sistema Nervioso/genética , Trastornos Heredodegenerativos del Sistema Nervioso/patología , Humanos , Péptidos y Proteínas de Señalización Intercelular , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Oligopéptidos/farmacocinética , Péptidos/farmacocinética , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Expansión de Repetición de Trinucleótido/genética
13.
J Biol Chem ; 291(29): 15156-68, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27226628

RESUMEN

A peptide segment that binds the active site of a serine protease in a substrate-like manner may behave like an inhibitor or a substrate. However, there is sparse information on which factors determine the behavior a particular peptide segment will exhibit. Here, we describe the first x-ray crystal structure of a nanobody in complex with a serine protease. The nanobody displays a new type of interaction between an antibody and a serine protease as it inserts its complementary determining region-H3 loop into the active site of the protease in a substrate-like manner. The unique binding mechanism causes the nanobody to behave as a strong inhibitor as well as a poor substrate. Intriguingly, its substrate behavior is incomplete, as 30-40% of the nanobody remained intact and inhibitory after prolonged incubation with the protease. Biochemical analysis reveals that an intra-loop interaction network within the complementary determining region-H3 of the nanobody balances its inhibitor versus substrate behavior. Collectively, our results unveil molecular factors, which may be a general mechanism to determine the substrate versus inhibitor behavior of other protease inhibitors.


Asunto(s)
Camélidos del Nuevo Mundo/inmunología , Serina Proteasas/inmunología , Anticuerpos de Dominio Único/química , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Regiones Determinantes de Complementariedad , Cristalografía por Rayos X , Humanos , Cinética , Modelos Moleculares , Conformación Proteica , Serina Proteasas/química , Serina Proteasas/metabolismo , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/metabolismo , Anticuerpos de Dominio Único/metabolismo , Especificidad por Sustrato , Activador de Plasminógeno de Tipo Uroquinasa/antagonistas & inhibidores , Activador de Plasminógeno de Tipo Uroquinasa/genética , Activador de Plasminógeno de Tipo Uroquinasa/inmunología
14.
Mol Cell ; 29(5): 563-76, 2008 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-18342604

RESUMEN

The 2.9 A crystal structure of the core SRPK1:ASF/SF2 complex reveals that the N-terminal half of the basic RS domain of ASF/SF2, which is destined to be phosphorylated, is bound to an acidic docking groove of SRPK1 distal to the active site. Phosphorylation of ASF/SF2 at a single site in the C-terminal end of the RS domain generates a primed phosphoserine that binds to a basic site in the kinase. Biochemical experiments support a directional sliding of the RS peptide through the docking groove to the active site during phosphorylation, which ends with the unfolding of a beta strand of the RRM domain and binding of the unfolded region to the docking groove. We further suggest that the priming of the first serine facilitates directional substrate translocation and efficient phosphorylation.


Asunto(s)
Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Adenilil Imidodifosfato/química , Adenilil Imidodifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Cristalografía por Rayos X , Humanos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Unión al ARN , Ribonucleósido Difosfato Reductasa/química , Ribonucleósido Difosfato Reductasa/genética , Ribonucleósido Difosfato Reductasa/metabolismo , Alineación de Secuencia , Factores de Empalme Serina-Arginina
15.
Biochem J ; 470(3): 303-17, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26188042

RESUMEN

Alzheimer's disease (AD) is a fatal neurodegenerative disease affecting 36 million people worldwide. Genetic and biochemical research indicate that the excessive generation of amyloid-ß peptide (Aß) from amyloid precursor protein (APP), is a major part of AD pathogenesis. FE65 is a brain-enriched adaptor protein that binds to APP. However, the role of FE65 in APP processing and the mechanisms that regulate binding of FE65 to APP are not fully understood. In the present study, we show that serum- and glucocorticoid-induced kinase 1 (SGK1) phosphorylates FE65 on Ser(610) and that this phosphorylation attenuates FE65 binding to APP. We also show that FE65 promotes amyloidogenic processing of APP and that FE65 Ser(610) phosphorylation inhibits this effect. Furthermore, we found that the effect of FE65 Ser(610) phosphorylation on APP processing is linked to a role of FE65 in metabolic turnover of APP via the proteasome. Thus FE65 influences APP degradation via the proteasome and phosphorylation of FE65 Ser(610) by SGK1 regulates binding of FE65 to APP, APP turnover and processing.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Sitios de Unión , Células CHO , Células COS , Chlorocebus aethiops , Cricetulus , Células HEK293 , Humanos , Proteínas Inmediatas-Precoces/genética , Modelos Moleculares , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/genética , Estabilidad Proteica , Proteolisis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/química
16.
Biochem J ; 459(1): 181-91, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24444330

RESUMEN

SRPKs (serine/arginine protein kinases) are highly specific kinases that recognize and phosphorylate RS (Arg-Ser) dipeptide repeats. It has been shown previously that SRPK1 phosphorylates the RS domain of SRSF1 (serine/arginine splicing factor 1) at multiple sites using a directional and processive mechanism. Such ability to processively phosphorylate substrates is proposed to be an inherent characteristic of SRPKs. SRPK2 is highly related to SRPK1 in sequence and in vitro properties, yet it has been shown to have distinct substrate specificity and physiological function in vivo. To study the molecular basis for substrate specificity of SRPK2, we investigated the roles of the non-kinase regions and a conserved docking groove of SRPK2 in the recognition and phosphorylation of different substrates: SRSF1 and acinusS. Our results reveal that a conserved electronegative docking groove in SRPK2, but not its non-kinase regions, is responsible for substrate binding regardless of their identities. Although SRPK2 phosphorylates SRSF1 in a processive manner as predicted, an electronegative region on acinusS restricts SRPK2 phosphorylation to a single specific site despite the presence of multiple RS dipeptides. These results suggest that primary structural elements on the substrates serve as key regulatory roles in determining the phosphorylation mechanism of SRPK2.


Asunto(s)
Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Secuencia de Aminoácidos , Línea Celular Tumoral , Secuencia Conservada , Humanos , Datos de Secuencia Molecular , Fosforilación/fisiología , Unión Proteica/fisiología , Especificidad por Sustrato
17.
J Biol Chem ; 288(16): 11155-64, 2013 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-23443661

RESUMEN

Matriptase, a type II trans-membrane serine protease of the S1 trypsin-like family, is expressed on the surface of nearly all normal human epithelium and found in biological fluid-like human milk. Matriptase overexpression has been implicated in tumor progression in certain epithelium-derived cancer cells. Matriptase is tightly regulated by its cognate inhibitor hepatocyte growth factor activator inhibitor-1 (HAI-1). It has been demonstrated that the Kunitz domain I (KD1) but not Kunitz domain II (KD2) of HAI-1 is responsible for the inhibitory activity of HAI-1 against matriptase. To investigate the molecular basis of inhibition of matriptase by HAI-1, we solved several crystal structures of matriptase serine protease domain in complex with the fragments of HAI-1. Based on these structures, we found that the binding of KD1 was different from previously predicted binding mode. The P3 arginine residue occupies the S3 specificity pocket of matriptase, but not the S4 pocket as in the cases of hepatocyte growth factor activator·HAI-1 KD1 and matriptase·sunflower trypsin inhibitor-1 complexes. The long 60-loop of matriptase makes direct contact with HAI-1 but remains flexible even in the complexes, and its apex does not bind with KD1 tightly. The interactions between this unique 60-loop and KD1 may provide an opportunity to increase the specificity and inhibitory activity of KD1 for matriptase. Furthermore, comparison between KD1 and a homology model of HAI-1 KD2 rationalizes the structural basis of why KD1 but not KD2 is responsible for the inhibitory activity of HAI-1 against matriptase.


Asunto(s)
Modelos Moleculares , Complejos Multiproteicos/química , Proteínas Inhibidoras de Proteinasas Secretoras/química , Serina Endopeptidasas/química , Cristalografía por Rayos X , Humanos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteínas Inhibidoras de Proteinasas Secretoras/genética , Proteínas Inhibidoras de Proteinasas Secretoras/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo
18.
J Agric Food Chem ; 72(7): 3277-3290, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38329044

RESUMEN

Rice bran is a valuable byproduct from the food processing industry, which contains abundant protein, essential unsaturated fatty acids, and numerous bioactive compounds. However, its susceptibility to rancidity greatly restricts its wide utilization. Many strategies have been proposed to delay the rancidity of rice bran, but most of them have their respective limitations. Here, we proposed that developing rice ban lipase peptide inhibitors represents an alternative and promising prescription for impeding the rancidity of rice bran, in contrast to the conventional stabilization approaches for rice bran. For this reason, the rancidity mechanisms of rice bran and the research progress of rice bran lipases were discussed. In addition, the feasibility of utilizing in silico screening and phage display, two state-of-the-art technologies, in the design of the related peptide inhibitors was also highlighted. This knowledge is expected to provide a theoretical basis for opening a new avenue for stabilizing rice bran.


Asunto(s)
Oryza , Oryza/química , Lipasa/química , Proteínas , Péptidos/farmacología
19.
Commun Chem ; 7(1): 144, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937565

RESUMEN

Serine-arginine (SR) proteins are splicing factors that play essential roles in both constitutive and alternative pre-mRNA splicing. Phosphorylation of their C-terminal RS domains by SR protein kinases (SRPKs) regulates their localization and diverse cellular activities. Dysregulation of phosphorylation has been implicated in many human diseases, including cancers. Here, we report the development of a covalent protein-protein interaction inhibitor, C-DBS, that targets a lysine residue within the SRPK-specific docking groove to block the interaction and phosphorylation of the prototypic SR protein SRSF1. C-DBS exhibits high specificity and conjugation efficiency both in vitro and in cellulo. This self-cell-penetrating inhibitor attenuates the phosphorylation of endogenous SR proteins and subsequently inhibits the angiogenesis, migration, and invasion of cancer cells. These findings provide a new foundation for the development of covalent SRPK inhibitors for combatting diseases such as cancer and viral infections and overcoming the resistance encountered by ATP-competitive inhibitors.

20.
iScience ; 24(5): 102423, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-33997701

RESUMEN

Serine-arginine (SR) protein kinases (SRPKs) regulate the functions of the SR-rich splicing factors by phosphorylating multiple serines within their C-terminal arginine-serine-rich domains. Dysregulation of these phosphorylation events has been implicated in many diseases, suggesting SRPKs are potential therapeutic targets. In particular, aberrant SRPK1 expression alters the balances of proangiogenic (VEGF165) and antiangiogenic (VEGF165b) splicing isoforms of the key angiogenesis factor, vascular endothelial growth factor (VEGF), through the phosphorylation of prototypic SR protein SRSF1. Here, we report a protein-protein interaction (PPI) inhibitor of SRPKs, docking blocker of SRPK1 (DBS1), that specifically blocks a conserved substrate docking groove unique to SRPKs. DBS1 is a cell-permeable inhibitor that effectively inhibits the binding and phosphorylation of SRSF1 and subsequently switches VEGF splicing from the proangiogenic to the antiangiogenic isoform. Our findings thus provide a new direction for the development of SRPK inhibitors through targeting a unique PPI site to combat angiogenic diseases.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda