Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Neuroinflammation ; 21(1): 164, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918759

RESUMEN

The microglia-mediated neuroinflammation have been shown to play a crucial role in the ocular pathological angiogenesis process, but specific immunotherapies for neovascular ocular diseases are still lacking. This study proposed that targeting GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) might be a novel immunotherapy for these angiogenesis diseases. We found a significant upregulation of CGAS and STING genes in the RNA-seq data derived from retinal tissues of the patients with proliferative diabetic retinopathy. In experimental models of ocular angiogenesis including laser-induced choroidal neovascularization (CNV) and oxygen-induced retinopathy (OIR), the cGAS-STING pathway was activated as angiogenesis progressed. Either genetic deletion or pharmacological inhibition of STING resulted in a remarkable suppression of neovascularization in both models. Furthermore, cGAS-STING signaling was specifically activated in myeloid cells, triggering the subsequent RIP1-RIP3-MLKL pathway activation and leading to necroptosis-mediated inflammation. Notably, targeted inhibition of the cGAS-STING pathway with C-176 or SN-011 could significantly suppress pathological angiogenesis in CNV and OIR. Additionally, the combination of C-176 or SN-011 with anti-VEGF therapy led to least angiogenesis, markedly enhancing the anti-angiogenic effectiveness. Together, our findings provide compelling evidence for the importance of the cGAS-STING-necroptosis axis in pathological angiogenesis, highlighting its potential as a promising immunotherapeutic target for treating neovascular ocular diseases.


Asunto(s)
Proteínas de la Membrana , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias , Nucleotidiltransferasas , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/antagonistas & inhibidores , Animales , Humanos , Ratones , Enfermedades Neuroinflamatorias/metabolismo , Neovascularización Coroidal/metabolismo , Neovascularización Coroidal/patología , Neovascularización Coroidal/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Ratones Noqueados , Retinopatía Diabética/metabolismo
2.
Glia ; 69(11): 2644-2657, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34288126

RESUMEN

Activation of microglia and inflammation-mediated vascular damages are suggested to play a decisive role in the pathogenesis of various retinopathies. The inducible nitric oxide synthase (iNOS) was required for activated microglia-mediated injuries. However, the induction mechanism of microglia activation during retinal vascular diseases is still elusive. Here we showed that IL-17 induced microglia activation with high expression of iNOS and promoted the development of retinal vascular diseases. IL-17-dependent activation of the STAT3-iNOS pathway was essentially required for microglia activation, which promoted endothelial cell growth and accelerated vascular leakage and leukostasis via IL-6 in vitro and in vivo. Taken together, our data provide novel mechanistic insights on microglia activation-mediated retinopathy, unveil the specific role of IL-17 on microglia, and define novel therapeutic targets for treating retinal vascular diseases.


Asunto(s)
Interleucina-17 , Óxido Nítrico Sintasa de Tipo II , Enfermedades de la Retina , Enfermedades Vasculares , Humanos , Interleucina-17/metabolismo , Microglía/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Enfermedades de la Retina/metabolismo , Enfermedades Vasculares/metabolismo , Enfermedades Vasculares/patología
3.
Biomolecules ; 13(10)2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37892214

RESUMEN

Hypoxia-induced retinal neovascularization is a leading cause of blindness worldwide. Oxygen-induced retinopathy (OIR) mouse, a well-established angiogenesis model, has been extensively used to evaluate the effect of anti-angiogenic agents through intravitreal injection. Here, we serendipitously found that the needles used for intravitreal injection caused an unexpected "anti-angiogenic" effect in the OIR mice. To evaluate the effects of various intravitreal puncture sizes on retinal neovascularization and explore the potential underlying mechanism, intravitreal punctures using 0.5 mm (25 G), 0.3 mm (30 G), or 0.21 mm (33 G) needles were performed in OIR mice. Compared with 0.3 mm and 0.21 mm puncture, the 0.5 mm puncture remarkably suppressed the formation of pathological angiogenesis, inhibited vascular leakage, and remodeled the retinal vasculature. Mechanistically, the 0.5 mm puncture induced a substantial reduction in intraocular pressure (IOP), leading to an improvement in oxygen partial pressure (pO2) and significant reduction in Hif1a expression, resulting in resolution of angiogenic and inflammatory responses. Furthermore, IOP-lowering drugs, Travatan or Azarga, also promoted the alleviation of hypoxia and exhibited a potent anti-angiogenesis efficacy. Our study revealed an acute and significant reduction in IOP caused by a large puncture, which could remarkably suppress HIF-1α-mediated retinal neovascularization, indicating that lowering IOP may be a promising therapeutic avenue for treating retinal neovascular diseases.


Asunto(s)
Enfermedades de la Retina , Neovascularización Retiniana , Animales , Ratones , Neovascularización Retiniana/metabolismo , Presión Intraocular , Neovascularización Patológica/tratamiento farmacológico , Oxígeno/uso terapéutico , Hipoxia/tratamiento farmacológico , Hipoxia/metabolismo , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Ratones Endogámicos C57BL
4.
Sci Adv ; 8(2): eabj9617, 2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35020440

RESUMEN

Graft-versus-host disease (GVHD)­associated dry eye disease is characterized by extensive inflammatory destruction in the ocular surface and causes unbearable pain and visual impairment. Current treatments provide limited benefits. Here, we report that exosomes from mesenchymal stromal cells (MSC-exo) administered as eye drops notably alleviate GVHD-associated dry eye disease by suppressing inflammation and improving epithelial recovery in mice and humans. In a prospective clinical trial, 28 eyes with refractory GVHD­dry eye disease exhibited substantial relief after MSC-exo treatment, showing reduced fluorescein scores, longer tear-film breakup time, increased tear secretion, and lower OSDI scores. Mechanistically, MSC-exo reprogramed proinflammatory M1 macrophages toward the immunosuppressive M2 via miR-204­mediated targeting of the IL-6/IL-6R/Stat3 pathway. Blockade of miR-204 abolished the effects of MSC-exo, while overloading L929-exo with miR-204 markedly attenuated dry eye. Thus, this study suggests that MSC-exo are efficacious in treating GVHD-associated dry eye disease and highlights miR-204 as a potential therapeutic agent.

5.
Cell Death Dis ; 13(12): 1056, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36539414

RESUMEN

Retinal degeneration is a kind of neurodegeneration characterized by progressive neuronal death and dysfunction of retinal pigment epithelium (RPE) cells, leading to permanent visual impairment. It still lacks effective therapeutic options and new drugs are highly warranted. In this study, we found the expression of IL-4, a critical regulator of immunity, was reduced in both patients and mouse models. Importantly, exogenous intravitreal IL-4 application could exert a novel neuroprotective effect, characterized by well-preserved RPE layer and neuroretinal structure, as well as amplified wave-amplitudes in ERG. The RNA-seq analysis revealed that IL-4 treatment suppressed the essential oxidative and pro-inflammatory pathways in the degenerative retina. Particularly, IL-4 upregulated the IL-4Rα on RPE cells and induced a reparative phenotype via the activation of Nrf2 both in vitro and in vivo. Furthermore, the Nrf2-/- mice displayed no recovery in response to IL-4 application, highlighting a significant role of Nrf2 in IL-4-mediated protection. Our data provides evidence that IL-4 protects against retinal neurodegeneration by its antioxidant and anti-inflammatory property through IL-4Rα upregulation and Nrf2 activation in RPE cells. The IL-4/IL-4Rα-Nrf2 axis maybe the potential targets for the development of novel therapies for neurodegenerative diseases.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Animales , Ratones , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Interleucina-4/genética , Interleucina-4/farmacología , Interleucina-4/metabolismo , Transducción de Señal , Epitelio Pigmentado de la Retina/metabolismo , Retina/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda