Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 4.032
Filtrar
Más filtros

Publication year range
1.
Nat Immunol ; 24(6): 1007-1019, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37069398

RESUMEN

Adoptive transfer of genetically engineered chimeric antigen receptor (CAR) T cells is becoming a promising treatment option for hematological malignancies. However, T cell immunotherapies have mostly failed in individuals with solid tumors. Here, with a CRISPR-Cas9 pooled library, we performed an in vivo targeted loss-of-function screen and identified ST3 ß-galactoside α-2,3-sialyltransferase 1 (ST3GAL1) as a negative regulator of the cancer-specific migration of CAR T cells. Analysis of glycosylated proteins revealed that CD18 is a major effector of ST3GAL1 in activated CD8+ T cells. ST3GAL1-mediated glycosylation induces the spontaneous nonspecific tissue sequestration of T cells by altering lymphocyte function-associated antigen-1 (LFA-1) endocytic recycling. Engineered CAR T cells with enhanced expression of ßII-spectrin, a central LFA-1-associated cytoskeleton molecule, reversed ST3GAL1-mediated nonspecific T cell migration and reduced tumor growth in mice by improving tumor-specific homing of CAR T cells. These findings identify the ST3GAL1-ßII-spectrin axis as a major cell-intrinsic program for cancer-targeting CAR T cell migration and as a promising strategy for effective T cell immunotherapy.


Asunto(s)
Receptores Quiméricos de Antígenos , Animales , Ratones , Linfocitos T CD8-positivos , Línea Celular Tumoral , Movimiento Celular , Inmunoterapia Adoptiva , Antígeno-1 Asociado a Función de Linfocito , Espectrina , Humanos , Femenino
2.
Cell ; 181(4): 865-876.e12, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32353252

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic, caused by the SARS-CoV-2 virus, has highlighted the need for antiviral approaches that can target emerging viruses with no effective vaccines or pharmaceuticals. Here, we demonstrate a CRISPR-Cas13-based strategy, PAC-MAN (prophylactic antiviral CRISPR in human cells), for viral inhibition that can effectively degrade RNA from SARS-CoV-2 sequences and live influenza A virus (IAV) in human lung epithelial cells. We designed and screened CRISPR RNAs (crRNAs) targeting conserved viral regions and identified functional crRNAs targeting SARS-CoV-2. This approach effectively reduced H1N1 IAV load in respiratory epithelial cells. Our bioinformatic analysis showed that a group of only six crRNAs can target more than 90% of all coronaviruses. With the development of a safe and effective system for respiratory tract delivery, PAC-MAN has the potential to become an important pan-coronavirus inhibition strategy.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Sistemas CRISPR-Cas , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , ARN Viral/antagonistas & inhibidores , Células A549 , Profilaxis Antibiótica/métodos , Secuencia de Bases , Betacoronavirus/genética , Betacoronavirus/crecimiento & desarrollo , COVID-19 , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Simulación por Computador , Secuencia Conservada , Coronavirus/efectos de los fármacos , Coronavirus/genética , Coronavirus/crecimiento & desarrollo , Infecciones por Coronavirus/tratamiento farmacológico , Proteínas de la Nucleocápside de Coronavirus , ARN Polimerasa Dependiente de ARN de Coronavirus , Células Epiteliales/virología , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Pulmón/patología , Pulmón/virología , Proteínas de la Nucleocápside/genética , Pandemias , Fosfoproteínas , Filogenia , Neumonía Viral/tratamiento farmacológico , ARN Polimerasa Dependiente del ARN/genética , SARS-CoV-2 , Proteínas no Estructurales Virales/genética
3.
Cell ; 171(2): 481-494.e15, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28985567

RESUMEN

Diffuse large B cell lymphoma (DLBCL) is the most common form of blood cancer and is characterized by a striking degree of genetic and clinical heterogeneity. This heterogeneity poses a major barrier to understanding the genetic basis of the disease and its response to therapy. Here, we performed an integrative analysis of whole-exome sequencing and transcriptome sequencing in a cohort of 1,001 DLBCL patients to comprehensively define the landscape of 150 genetic drivers of the disease. We characterized the functional impact of these genes using an unbiased CRISPR screen of DLBCL cell lines to define oncogenes that promote cell growth. A prognostic model comprising these genetic alterations outperformed current established methods: cell of origin, the International Prognostic Index comprising clinical variables, and dual MYC and BCL2 expression. These results comprehensively define the genetic drivers and their functional roles in DLBCL to identify new therapeutic opportunities in the disease.


Asunto(s)
Sistemas CRISPR-Cas , Perfilación de la Expresión Génica , Linfoma de Células B Grandes Difuso/genética , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Células Cultivadas , Exoma , Femenino , Humanos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Masculino , Rituximab/administración & dosificación
4.
Nature ; 632(8023): 209-217, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39085540

RESUMEN

Glutamate transmission and activation of ionotropic glutamate receptors are the fundamental means by which neurons control their excitability and neuroplasticity1. The N-methyl-D-aspartate receptor (NMDAR) is unique among all ligand-gated channels, requiring two ligands-glutamate and glycine-for activation. These receptors function as heterotetrameric ion channels, with the channel opening dependent on the simultaneous binding of glycine and glutamate to the extracellular ligand-binding domains (LBDs) of the GluN1 and GluN2 subunits, respectively2,3. The exact molecular mechanism for channel gating by the two ligands has been unclear, particularly without structures representing the open channel and apo states. Here we show that the channel gate opening requires tension in the linker connecting the LBD and transmembrane domain (TMD) and rotation of the extracellular domain relative to the TMD. Using electron cryomicroscopy, we captured the structure of the GluN1-GluN2B (GluN1-2B) NMDAR in its open state bound to a positive allosteric modulator. This process rotates and bends the pore-forming helices in GluN1 and GluN2B, altering the symmetry of the TMD channel from pseudofourfold to twofold. Structures of GluN1-2B NMDAR in apo and single-liganded states showed that binding of either glycine or glutamate alone leads to distinct GluN1-2B dimer arrangements but insufficient tension in the LBD-TMD linker for channel opening. This mechanistic framework identifies a key determinant for channel gating and a potential pharmacological strategy for modulating NMDAR activity.


Asunto(s)
Ácido Glutámico , Glicina , Activación del Canal Iónico , Receptores de N-Metil-D-Aspartato , Animales , Ratas , Regulación Alostérica , Microscopía por Crioelectrón , Ácido Glutámico/metabolismo , Glicina/metabolismo , Ligandos , Modelos Moleculares , Oocitos/metabolismo , Dominios Proteicos , Multimerización de Proteína , Subunidades de Proteína/metabolismo , Subunidades de Proteína/química , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/ultraestructura , Rotación , Xenopus laevis
5.
Nature ; 603(7900): 247-252, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35264760

RESUMEN

Interlayer excitons (ILXs) - electron-hole pairs bound across two atomically thin layered semiconductors - have emerged as attractive platforms to study exciton condensation1-4, single-photon emission and other quantum information applications5-7. Yet, despite extensive optical spectroscopic investigations8-12, critical information about their size, valley configuration and the influence of the moiré potential remains unknown. Here, in a WSe2/MoS2 heterostructure, we captured images of the time-resolved and momentum-resolved distribution of both of the particles that bind to form the ILX: the electron and the hole. We thereby obtain a direct measurement of both the ILX diameter of around 5.2 nm, comparable with the moiré-unit-cell length of 6.1 nm, and the localization of its centre of mass. Surprisingly, this large ILX is found pinned to a region of only 1.8 nm diameter within the moiré cell, smaller than the size of the exciton itself. This high degree of localization of the ILX is backed by Bethe-Salpeter equation calculations and demonstrates that the ILX can be localized within small moiré unit cells. Unlike large moiré cells, these are uniform over large regions, allowing the formation of extended arrays of localized excitations for quantum technology.

6.
N Engl J Med ; 391(7): 609-618, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39141853

RESUMEN

BACKGROUND: Brain-computer interfaces can enable communication for people with paralysis by transforming cortical activity associated with attempted speech into text on a computer screen. Communication with brain-computer interfaces has been restricted by extensive training requirements and limited accuracy. METHODS: A 45-year-old man with amyotrophic lateral sclerosis (ALS) with tetraparesis and severe dysarthria underwent surgical implantation of four microelectrode arrays into his left ventral precentral gyrus 5 years after the onset of the illness; these arrays recorded neural activity from 256 intracortical electrodes. We report the results of decoding his cortical neural activity as he attempted to speak in both prompted and unstructured conversational contexts. Decoded words were displayed on a screen and then vocalized with the use of text-to-speech software designed to sound like his pre-ALS voice. RESULTS: On the first day of use (25 days after surgery), the neuroprosthesis achieved 99.6% accuracy with a 50-word vocabulary. Calibration of the neuroprosthesis required 30 minutes of cortical recordings while the participant attempted to speak, followed by subsequent processing. On the second day, after 1.4 additional hours of system training, the neuroprosthesis achieved 90.2% accuracy using a 125,000-word vocabulary. With further training data, the neuroprosthesis sustained 97.5% accuracy over a period of 8.4 months after surgical implantation, and the participant used it to communicate in self-paced conversations at a rate of approximately 32 words per minute for more than 248 cumulative hours. CONCLUSIONS: In a person with ALS and severe dysarthria, an intracortical speech neuroprosthesis reached a level of performance suitable to restore conversational communication after brief training. (Funded by the Office of the Assistant Secretary of Defense for Health Affairs and others; BrainGate2 ClinicalTrials.gov number, NCT00912041.).


Asunto(s)
Esclerosis Amiotrófica Lateral , Interfaces Cerebro-Computador , Disartria , Habla , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Amiotrófica Lateral/complicaciones , Esclerosis Amiotrófica Lateral/rehabilitación , Calibración , Equipos de Comunicación para Personas con Discapacidad , Disartria/rehabilitación , Disartria/etiología , Electrodos Implantados , Microelectrodos , Cuadriplejía/etiología , Cuadriplejía/rehabilitación
7.
PLoS Pathog ; 20(7): e1012345, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38968329

RESUMEN

The CRISPR-Cas13 system has been proposed as an alternative treatment of viral infections. However, for this approach to be adopted as an antiviral, it must be optimized until levels of efficacy rival or exceed the performance of conventional approaches. To take steps toward this goal, we evaluated the influenza viral RNA degradation patterns resulting from the binding and enzymatic activity of mRNA-encoded LbuCas13a and two crRNAs from a prior study, targeting PB2 genomic and messenger RNA. We found that the genome targeting guide has the potential for significantly higher potency than originally detected, because degradation of the genomic RNA is not uniform across the PB2 segment, but it is augmented in proximity to the Cas13 binding site. The PB2 genome targeting guide exhibited high levels (>1 log) of RNA degradation when delivered 24 hours post-infection in vitro and maintained that level of degradation over time, with increasing multiplicity of infection (MOI), and across modern influenza H1N1 and H3N2 strains. Chemical modifications to guides with potent LbuCas13a function, resulted in nebulizer delivered efficacy (>1-2 log reduction in viral titer) in a hamster model of influenza (Influenza A/H1N1/California/04/09) infection given prophylactically or as a treatment (post-infection). Maximum efficacy was achieved with two doses, when administered both pre- and post-infection. This work provides evidence that mRNA-encoded Cas13a can effectively mitigate Influenza A infections opening the door to the development of a programmable approach to treating multiple respiratory infections.


Asunto(s)
Sistemas CRISPR-Cas , Gripe Humana , Estabilidad del ARN , ARN Mensajero , ARN Viral , Animales , ARN Viral/genética , ARN Viral/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Humanos , Gripe Humana/virología , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/virología , Antivirales/farmacología , Perros , Cricetinae , Proteínas Virales/genética , Proteínas Virales/metabolismo , Mesocricetus , Células de Riñón Canino Madin Darby
9.
Nature ; 583(7814): 90-95, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32499645

RESUMEN

Primary immunodeficiency (PID) is characterized by recurrent and often life-threatening infections, autoimmunity and cancer, and it poses major diagnostic and therapeutic challenges. Although the most severe forms of PID are identified in early childhood, most patients present in adulthood, typically with no apparent family history and a variable clinical phenotype of widespread immune dysregulation: about 25% of patients have autoimmune disease, allergy is prevalent and up to 10% develop lymphoid malignancies1-3. Consequently, in sporadic (or non-familial) PID genetic diagnosis is difficult and the role of genetics is not well defined. Here we address these challenges by performing whole-genome sequencing in a large PID cohort of 1,318 participants. An analysis of the coding regions of the genome in 886 index cases of PID found that disease-causing mutations in known genes that are implicated in monogenic PID occurred in 10.3% of these patients, and a Bayesian approach (BeviMed4) identified multiple new candidate PID-associated genes, including IVNS1ABP. We also examined the noncoding genome, and found deletions in regulatory regions that contribute to disease causation. In addition, we used a genome-wide association study to identify loci that are associated with PID, and found evidence for the colocalization of-and interplay between-novel high-penetrance monogenic variants and common variants (at the PTPN2 and SOCS1 loci). This begins to explain the contribution of common variants to the variable penetrance and phenotypic complexity that are observed in PID. Thus, using a cohort-based whole-genome-sequencing approach in the diagnosis of PID can increase diagnostic yield and further our understanding of the key pathways that influence immune responsiveness in humans.


Asunto(s)
Enfermedades de Inmunodeficiencia Primaria/genética , Secuenciación Completa del Genoma , Complejo 2-3 Proteico Relacionado con la Actina/genética , Teorema de Bayes , Estudios de Cohortes , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Enfermedades de Inmunodeficiencia Primaria/diagnóstico , Enfermedades de Inmunodeficiencia Primaria/inmunología , Proteína Tirosina Fosfatasa no Receptora Tipo 2/genética , Proteínas de Unión al ARN/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Proteína 1 Supresora de la Señalización de Citocinas/genética , Factores de Transcripción/genética
10.
J Biol Chem ; 300(4): 107153, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462163

RESUMEN

The innate immune system features a web of interacting pathways that require exquisite regulation. To identify novel nodes in this immune landscape, we conducted a gain-of-function, genome-wide CRISPR activation screen with influenza A virus. We identified both appreciated and novel antiviral genes, including Jade family PHD zinc finger 3 (JADE3) a protein involved in directing the histone acetyltransferase histone acetyltransferase binding to ORC1 complex to modify chromatin and regulate transcription. JADE3 is both necessary and sufficient to restrict influenza A virus infection. Our results suggest a distinct function for JADE3 as expression of the closely related paralogs JADE1 and JADE2 does not confer resistance to influenza A virus infection. JADE3 is required for both constitutive and inducible expression of the well-characterized antiviral gene interferon-induced transmembrane protein 3 (IFITM3). Furthermore, we find JADE3 activates the NF-kB signaling pathway, which is required for the promotion of IFITM3 expression by JADE3. Therefore, we propose JADE3 activates an antiviral genetic program involving NF-kB-dependent IFITM3 expression to restrict influenza A virus infection.


Asunto(s)
Regulación de la Expresión Génica , Inmunidad Innata , Proteínas de la Membrana , FN-kappa B , Proteínas Oncogénicas , Proteínas de Unión al ARN , Animales , Humanos , Sistemas CRISPR-Cas , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Células HEK293 , Inmunidad Innata/genética , Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/inmunología , Transducción de Señal , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/inmunología
11.
Bioinformatics ; 40(8)2024 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-39115813

RESUMEN

MOTIVATION: Despite an increase in protein modelling accuracy following the development of AlphaFold2, there remains an accuracy gap between predicted and observed model quality assessment (MQA) scores. In CASP15, variations in AlphaFold2 model accuracy prediction were noticed for quaternary models of very similar observed quality. In this study, we compare plDDT and pTM to their observed counterparts the local distance difference test (lDDT) and TM-score for both tertiary and quaternary models to examine whether reliability is retained across the scoring range under normal modelling conditions and in situations where AlphaFold2 functionality is customized. We also explore plDDT and pTM ranking accuracy in comparison with the published independent MQA programmes ModFOLD9 and ModFOLDdock. RESULTS: plDDT was found to be an accurate descriptor of tertiary model quality compared to observed lDDT-Cα scores (Pearson r = 0.97), and achieved a ranking agreement true positive rate (TPR) of 0.34 with observed scores, which ModFOLD9 could not improve. However, quaternary structure accuracy was reduced (plDDT r = 0.67, pTM r = 0.70) and significant overprediction was seen with both scores for some lower quality models. Additionally, ModFOLDdock was able to improve upon AF2-Multimer model ranking compared to TM-score (TPR 0.34) and oligo-lDDT score (TPR 0.43). Finally, evidence is presented for increased variability in plDDT and pTM when using custom template recycling, which is more pronounced for quaternary structures. AVAILABILITY AND IMPLEMENTATION: The ModFOLD9 and ModFOLDdock quality assessment servers are available at https://www.reading.ac.uk/bioinf/ModFOLD/ and https://www.reading.ac.uk/bioinf/ModFOLDdock/, respectively. A docker image is available at https://hub.docker.com/r/mcguffin/multifold.


Asunto(s)
Benchmarking , Modelos Moleculares , Proteínas , Benchmarking/métodos , Proteínas/química , Programas Informáticos , Biología Computacional/métodos , Conformación Proteica , Pliegue de Proteína
12.
PLoS Pathog ; 19(3): e1010843, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36897927

RESUMEN

The immunological surveillance factors controlling vulnerability of the female reproductive tract (FRT) to sexually transmitted viral infections are not well understood. Interferon-epsilon (IFNɛ) is a distinct, immunoregulatory type-I IFN that is constitutively expressed by FRT epithelium and is not induced by pathogens like other antiviral IFNs α, ß and λ. We show the necessity of IFNɛ for Zika Virus (ZIKV) protection by: increased susceptibility of IFNɛ-/- mice; their "rescue" by intravaginal recombinant IFNɛ treatment and blockade of protective endogenous IFNɛ by neutralising antibody. Complementary studies in human FRT cell lines showed IFNɛ had potent anti-ZIKV activity, associated with transcriptome responses similar to IFNλ but lacking the proinflammatory gene signature of IFNα. IFNɛ activated STAT1/2 pathways similar to IFNα and λ that were inhibited by ZIKV-encoded non-structural (NS) proteins, but not if IFNε exposure preceded infection. This scenario is provided by the constitutive expression of endogenous IFNε. However, the IFNɛ expression was not inhibited by ZIKV NS proteins despite their ability to antagonise the expression of IFNß or λ. Thus, the constitutive expression of IFNɛ provides cellular resistance to viral strategies of antagonism and maximises the antiviral activity of the FRT. These results show that the unique spatiotemporal properties of IFNε provides an innate immune surveillance network in the FRT that is a significant barrier to viral infection with important implications for prevention and therapy.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Animales , Femenino , Humanos , Ratones , Antivirales/farmacología , Genitales Femeninos , Factores Inmunológicos , Interferón-alfa/farmacología , Virus Zika/genética
13.
Immunity ; 44(1): 46-58, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26789921

RESUMEN

Viruses are obligate parasites and thus require the machinery of the host cell to replicate. Inhibition of host factors co-opted during active infection is a strategy hosts use to suppress viral replication and a potential pan-antiviral therapy. To define the cellular proteins and processes required for a virus during infection is thus crucial to understanding the mechanisms of virally induced disease. In this report, we generated fully infectious tagged influenza viruses and used infection-based proteomics to identify pivotal arms of cellular signaling required for influenza virus growth and infectivity. Using mathematical modeling and genetic and pharmacologic approaches, we revealed that modulation of Sec61-mediated cotranslational translocation selectively impaired glycoprotein proteostasis of influenza as well as HIV and dengue viruses and led to inhibition of viral growth and infectivity. Thus, by studying virus-human protein-protein interactions in the context of active replication, we have identified targetable host factors for broad-spectrum antiviral therapies.


Asunto(s)
Interacciones Huésped-Parásitos/fisiología , Virus de la Influenza A/fisiología , Virus de la Influenza A/patogenicidad , Modelos Teóricos , Replicación Viral/fisiología , Virus del Dengue/patogenicidad , Virus del Dengue/fisiología , VIH/patogenicidad , VIH/fisiología , Humanos , Inmunoprecipitación , Espectrometría de Masas , Pliegue de Proteína , Proteómica
14.
Arterioscler Thromb Vasc Biol ; 44(1): 271-286, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37823267

RESUMEN

BACKGROUND: Prostacyclin is a fundamental signaling pathway traditionally associated with the cardiovascular system and protection against thrombosis but which also has regulatory functions in fibrosis, proliferation, and immunity. Prevailing dogma states that prostacyclin is principally derived from vascular endothelium, although it is known that other cells can also synthesize it. However, the role of nonendothelial sources in prostacyclin production has not been systematically evaluated resulting in an underappreciation of their importance relative to better characterized endothelial sources. METHODS: To address this, we have used novel endothelial cell-specific and fibroblast-specific COX (cyclo-oxygenase) and prostacyclin synthase knockout mice and cells freshly isolated from mouse and human lung tissue. We have assessed prostacyclin release by immunoassay and thrombosis in vivo using an FeCl3-induced carotid artery injury model. RESULTS: We found that in arteries, endothelial cells are the main source of prostacyclin but that in the lung, and other tissues, prostacyclin production occurs largely independently of endothelial and vascular smooth muscle cells. Instead, in mouse and human lung, prostacyclin production was strongly associated with fibroblasts. By comparison, microvascular endothelial cells from the lung showed weak prostacyclin synthetic capacity compared with those isolated from large arteries. Prostacyclin derived from fibroblasts and other nonendothelial sources was seen to contribute to antithrombotic protection. CONCLUSIONS: These observations define a new paradigm in prostacyclin biology in which fibroblast/nonendothelial-derived prostacyclin works in parallel with endothelium-derived prostanoids to control thrombotic risk and potentially a broad range of other biology. Although generation of prostacyclin by fibroblasts has been shown previously, the scale and systemic activity was unappreciated. As such, this represents a basic change in our understanding and may provide new insight into how diseases of the lung result in cardiovascular risk.


Asunto(s)
Epoprostenol , Trombosis , Ratones , Humanos , Animales , Fibrinolíticos , Células Endoteliales/metabolismo , Prostaglandinas I/metabolismo , Prostaglandinas I/farmacología , Endotelio Vascular/metabolismo , Ratones Noqueados , Fibroblastos/metabolismo , Trombosis/genética , Trombosis/prevención & control , Trombosis/metabolismo
15.
Brain ; 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39155061

RESUMEN

Huntington disease (HD) is a fatal neurodegenerative disease caused by a trinucleotide repeat expansion in exon 1 of the huntingtin gene (HTT) resulting in toxic gain-of-function and cell death. Despite its monogenic cause, the pathogenesis of HD is highly complex and increasing evidence indicates that, in addition to the full-length (FL) mutant HTT protein, the expanded exon 1 HTT (HTTexon1) protein that is translated from the HTT1a transcript generated by aberrant splicing is prone to aggregate and may contribute to HD pathology. This finding suggests that reducing the expression of HTT1a may achieve a greater therapeutic benefit than targeting only FL mutant HTT. Conversely, strategies that exclusively target FL HTT may not fully prevent the pathogenesis of HD. We have developed an engineered microRNA targeting the HTT exon 1 sequence (miHTT), delivered via adeno-associated virus serotype 5 (AAV5). The target sequence of miHTT is present in both FL HTT and HTT1a transcripts. Preclinical studies with AAV5-miHTT have demonstrated efficacy in several rodent and large animal models by reducing FL HTT mRNA and protein and rescuing HD-like phenotypes, and have been the rationale for phase I/II clinical studies now ongoing in the US and Europe. In the present study, we evaluated the ability of AAV5-miHTT to reduce the levels of aberrantly spliced HTT1a mRNA and the HTTexon1 protein in the brain of two mouse models of HD (heterozygous zQ175 knock-in mice and humanized Hu128/21 mice). Polyadenylated HTT1a mRNA and HTTexon1 protein were detected in the striatum and cortex of heterozygous zQ175 knock-in mice, but not in wild-type, littermate control mice. Intrastriatal administration of AAV5-miHTT resulted in dose-dependent expression of mature miHTT microRNA in cortical brain regions, accompanied by significant lowering of both FL HTT and HTT1a mRNA expression at two months post-injection. Mutant HTT and HTTexon1 protein levels were also significantly reduced in the striatum and cortex of heterozygous zQ175 knock-in at 2 months after AAV5-miHTT treatment and in humanized Hu128/21 mice 7 months post-treatment. The effects were confirmed in primary Hu128/21 neuronal cultures. These results demonstrate that AAV5-miHTT gene therapy is an effective approach to lower both FL HTT and the pathogenic HTTexon1 levels, which could potentially have an additive therapeutic benefit compared to other HTT-targeting modalities.

16.
Brain ; 147(3): 839-848, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38123517

RESUMEN

Intrathecal IgM production in multiple sclerosis is associated with a worse disease course. To investigate pathogenic relevance of autoreactive IgM in multiple sclerosis, CSF from two independent cohorts, including multiple sclerosis patients and controls, were screened for antibody binding to induced pluripotent stem cell-derived neurons and astrocytes, and a panel of CNS-related cell lines. IgM binding to a primitive neuro-ectodermal tumour cell line discriminated 10% of multiple sclerosis donors from controls. Transcriptomes of single IgM producing CSF B cells from patients with cell-binding IgM were sequenced and used to produce recombinant monoclonal antibodies for characterization and antigen identification. We produced five cell-binding recombinant IgM antibodies, of which one, cloned from an HLA-DR + plasma-like B cell, mediated antigen-dependent complement activation. Immunoprecipitation and mass spectrometry, and biochemical and transcriptome analysis of the target cells identified the iron transport scavenger protein SCARA5 as the antigen target of this antibody. Intrathecal injection of a SCARA5 antibody led to an increased T cell infiltration in an experimental autoimmune encephalomyelitis (EAE) model. CSF IgM might contribute to CNS inflammation in multiple sclerosis by binding to cell surface antigens like SCARA5 and activating complement, or by facilitating immune cell migration into the brain.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Inmunoglobulina M , Esclerosis Múltiple , Receptores Depuradores de Clase A , Animales , Humanos , Anticuerpos Monoclonales , Línea Celular Tumoral , Inmunoglobulina M/líquido cefalorraquídeo , Proteínas de Transporte de Membrana , Esclerosis Múltiple/líquido cefalorraquídeo , Esclerosis Múltiple/inmunología , Receptores Depuradores de Clase A/inmunología
17.
Am J Respir Crit Care Med ; 209(8): 938-946, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38300144

RESUMEN

Lung health, the development of lung disease, and how well a person with lung disease is able to live all depend on a wide range of societal factors. These systemic factors that adversely affect people and cause injustice can be thought of as "structural violence." To make the causal processes relating to chronic obstructive pulmonary disease (COPD) more apparent, and the responsibility to interrupt or alleviate them clearer, we have developed a taxonomy to describe this. It contains five domains: 1) avoidable lung harms (processes impacting lung development, processes that disadvantage lung health in particular groups across the life course), 2) diagnostic delay (healthcare factors; norms and attitudes that mean COPD is not diagnosed in a timely way, denying people with COPD effective treatment), 3) inadequate COPD care (ways in which the provision of care for people with COPD falls short of what is needed to ensure they are able to enjoy the best possible health, considered as healthcare resource allocation and norms and attitudes influencing clinical practice), 4) low status of COPD (ways COPD as a condition and people with COPD are held in less regard and considered less of a priority than other comparable health problems), and 5) lack of support (factors that make living with COPD more difficult than it should be, i.e., socioenvironmental factors and factors that promote social isolation). This model has relevance for policymakers, healthcare professionals, and the public as an educational resource to change clinical practices and priorities and stimulate advocacy and activism with the goal of the elimination of COPD.


Asunto(s)
Diagnóstico Tardío , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/terapia , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Atención a la Salud , Justicia Social , Violencia
18.
Am J Respir Crit Care Med ; 209(8): 960-972, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38127850

RESUMEN

Rationale: Cardiovascular events after chronic obstructive pulmonary disease (COPD) exacerbations are recognized. Studies to date have been post hoc analyses of trials, did not differentiate exacerbation severity, included death in the cardiovascular outcome, or had insufficient power to explore individual outcomes temporally.Objectives: We explore temporal relationships between moderate and severe exacerbations and incident, nonfatal hospitalized cardiovascular events in a primary care-derived COPD cohort.Methods: We included people with COPD in England from 2014 to 2020, from the Clinical Practice Research Datalink Aurum primary care database. The index date was the date of first COPD exacerbation or, for those without exacerbations, date upon eligibility. We determined composite and individual cardiovascular events (acute coronary syndrome, arrhythmia, heart failure, ischemic stroke, and pulmonary hypertension) from linked hospital data. Adjusted Cox regression models were used to estimate average and time-stratified adjusted hazard ratios (aHRs).Measurements and Main Results: Among 213,466 patients, 146,448 (68.6%) had any exacerbation; 119,124 (55.8%) had moderate exacerbations, and 27,324 (12.8%) had severe exacerbations. A total of 40,773 cardiovascular events were recorded. There was an immediate period of cardiovascular relative rate after any exacerbation (1-14 d; aHR, 3.19 [95% confidence interval (CI), 2.71-3.76]), followed by progressively declining yet maintained effects, elevated after one year (aHR, 1.84 [95% CI, 1.78-1.91]). Hazard ratios were highest 1-14 days after severe exacerbations (aHR, 14.5 [95% CI, 12.2-17.3]) but highest 14-30 days after moderate exacerbations (aHR, 1.94 [95% CI, 1.63-2.31]). Cardiovascular outcomes with the greatest two-week effects after a severe exacerbation were arrhythmia (aHR, 12.7 [95% CI, 10.3-15.7]) and heart failure (aHR, 8.31 [95% CI, 6.79-10.2]).Conclusions: Cardiovascular events after moderate COPD exacerbations occur slightly later than after severe exacerbations; heightened relative rates remain beyond one year irrespective of severity. The period immediately after an exacerbation presents a critical opportunity for clinical intervention and treatment optimization to prevent future cardiovascular events.


Asunto(s)
Enfermedades Cardiovasculares , Insuficiencia Cardíaca , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Progresión de la Enfermedad , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Arritmias Cardíacas , Insuficiencia Cardíaca/epidemiología , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología
19.
Am J Respir Crit Care Med ; 209(5): 529-542, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38261630

RESUMEN

Rationale: It is unclear whether extracorporeal CO2 removal (ECCO2R) can reduce the rate of intubation or the total time on invasive mechanical ventilation (IMV) in adults experiencing an exacerbation of chronic obstructive pulmonary disease (COPD). Objectives: To determine whether ECCO2R increases the number of ventilator-free days within the first 5 days postrandomization (VFD-5) in exacerbation of COPD in patients who are either failing noninvasive ventilation (NIV) or who are failing to wean from IMV. Methods: This randomized clinical trial was conducted in 41 U.S. institutions (2018-2022) (ClinicalTrials.gov ID: NCT03255057). Subjects were randomized to receive either standard care with venovenous ECCO2R (NIV stratum: n = 26; IMV stratum: n = 32) or standard care alone (NIV stratum: n = 22; IMV stratum: n = 33). Measurements and Main Results: The trial was stopped early because of slow enrollment and enrolled 113 subjects of the planned sample size of 180. There was no significant difference in the median VFD-5 between the arms controlled by strata (P = 0.36). In the NIV stratum, the median VFD-5 for both arms was 5 days (median shift = 0.0; 95% confidence interval [CI]: 0.0-0.0). In the IMV stratum, the median VFD-5 in the standard care and ECCO2R arms were 0.25 and 2 days, respectively; median shift = 0.00 (95% confidence interval: 0.00-1.25). In the NIV stratum, all-cause in-hospital mortality was significantly higher in the ECCO2R arm (22% vs. 0%, P = 0.02) with no difference in the IMV stratum (17% vs. 15%, P = 0.73). Conclusions: In subjects with exacerbation of COPD, the use of ECCO2R compared with standard care did not improve VFD-5. Clinical trial registered with www.clinicaltrials.gov (NCT03255057).


Asunto(s)
Ventilación no Invasiva , Enfermedad Pulmonar Obstructiva Crónica , Adulto , Humanos , Dióxido de Carbono , Respiración , Enfermedad Pulmonar Obstructiva Crónica/terapia , Circulación Extracorporea
20.
Nucleic Acids Res ; 51(W1): W274-W280, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37102670

RESUMEN

The IntFOLD server based at the University of Reading has been a leading method over the past decade in providing free access to accurate prediction of protein structures and functions. In a post-AlphaFold2 world, accurate models of tertiary structures are widely available for even more protein targets, so there has been a refocus in the prediction community towards the accurate modelling of protein-ligand interactions as well as modelling quaternary structure assemblies. In this paper, we describe the latest improvements to IntFOLD, which maintains its competitive structure prediction performance by including the latest deep learning methods while also integrating accurate model quality estimates and 3D models of protein-ligand interactions. Furthermore, we also introduce our two new server methods: MultiFOLD for accurately modelling both tertiary and quaternary structures, with performance which has been independently verified to outperform the standard AlphaFold2 methods, and ModFOLDdock, which provides world-leading quality estimates for quaternary structure models. The IntFOLD7, MultiFOLD and ModFOLDdock servers are available at: https://www.reading.ac.uk/bioinf/.


Asunto(s)
Proteínas , Programas Informáticos , Ligandos , Estructura Terciaria de Proteína , Modelos Moleculares , Proteínas/química , Conformación Proteica
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda