RESUMEN
BACKGROUND: We aimed to determine the association between seizure termination and side effects of isoflurane for the treatment of refractory status epilepticus (RSE) and super-refractory status epilepticus (SRSE) in neurointensive care units (neuro-ICUs). METHODS: This was a multicenter retrospective study of patients with RSE/SRSE treated with isoflurane for status epilepticus termination admitted to the neuro-ICUs of nine German university centers during 2011-2018. RESULTS: We identified 45 patients who received isoflurane for the treatment of RSE/SRSE. During isoflurane treatment, electroencephalograms showed no epileptiform discharges in 33 of 41 (80%) patients, and burst suppression pattern was achieved in 29 of 41 patients (71%). RSE/SRSE was finally terminated after treatment with isoflurane in 23 of 45 patients (51%) for the entire group and in 13 of 45 patients (29%) without additional therapy. Lengths of stay in the hospital and in the neuro-ICU were significantly extended in cases of ongoing status epilepticus under isoflurane treatment (p = 0.01 for length of stay in the hospital, p = 0.049 for length in the neuro-ICU). During isoflurane treatment, side effects were reported in 40 of 45 patients (89%) and mainly included hypotension (n = 40, 89%) and/or infection (n = 20, 44%). Whether side effects occurred did not affect the outcome at discharge. Of 22 patients with follow-up magnetic resonance imaging, 2 patients (9%) showed progressive magnetic resonance imaging alterations that were considered to be potentially associated with RSE/SRSE itself or with isoflurane therapy. CONCLUSIONS: Isoflurane was associated with a good effect in stopping RSE/SRSE. Nevertheless, establishing remission remained difficult. Side effects were common but without effect on the outcome at discharge.
Asunto(s)
Isoflurano , Estado Epiléptico , Anticonvulsivantes/uso terapéutico , Electroencefalografía , Humanos , Isoflurano/efectos adversos , Estudios Retrospectivos , Convulsiones/tratamiento farmacológico , Estado Epiléptico/tratamiento farmacológicoRESUMEN
OBJECTIVE: We tested the hypothesis that interstitial albumin can contribute to pharmacoresistance, which is common among patients with focal epilepsies. These patients often present with an open blood-brain barrier (BBB), resulting in diffusion of drug-binding albumin into the brain interstitial space. METHODS: Seizure-like events (SLEs) induced by 100 µm 4-aminopyridine (4-AP) were monitored using extracellular field potential recordings from acute rat entorhinal cortex-hippocampus slices. Effects of standard antiepileptic drugs (phenytoin, valproic acid, carbamazepine, and phenobarbital) were studied in the presence of albumin applied acutely or by intraventricular injection. Unbound antiepileptic drugs (AEDs) were detected by ultrafiltration and high-performance liquid chromatography (HPLC). RESULTS: Contrary to the absence of albumin, conventional AEDs failed to suppress SLEs in the rat entorhinal cortex in the presence of albumin. This effect was partially caused by buffering of phenytoin and carbamazepine (CBZ) by albumin. Increasing CBZ concentration from 50 µm to 100 µm resulted in block of SLEs. In slices obtained from animals that were pretreated with intraventricular albumin application 24 h prior to experiment, CBZ suppressed SLEs similar to control slices. We also found that application of serum-like electrolytes transformed SLEs into late recurrent discharges (LRDs), which were no longer responding to CBZ. SIGNIFICANCE: A dysfunctional BBB with acute extravasation of serum albumin into the brain's interstitial space could contribute to pharmacoresistance. In such instances, choice of an AED with low albumin binding affinity may help in seizure control.
Asunto(s)
Anticonvulsivantes/administración & dosificación , Anticonvulsivantes/metabolismo , Barrera Hematoencefálica/metabolismo , Resistencia a Medicamentos/fisiología , Convulsiones/tratamiento farmacológico , Convulsiones/metabolismo , 4-Aminopiridina/toxicidad , Animales , Barrera Hematoencefálica/efectos de los fármacos , Resistencia a Medicamentos/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Inyecciones Intraventriculares , Masculino , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar , Convulsiones/inducido químicamente , Albúmina Sérica Bovina/administración & dosificaciónRESUMEN
BACKGROUND: Acute symptomatic epileptic seizures are frequently seen in neurocritical care. To prevent subsequent unprovoked seizures, long-term treatments with antiseizure medications are often initiated although supporting evidence is lacking. This study aimed at prospectively assessing the risk of unprovoked seizure relapse with respect to the use of antiseizure medications. It was hypothesized that after a first acute symptomatic seizure of structural etiology, the cumulative 12-month risk of unprovoked seizure relapse is ≤ 25%. METHODS: Inclusion criteria were age ≥ 18 and acute symptomatic first-ever epileptic seizure; patients with status epilepticus were excluded. Using telephone and mail interviews, participants were followed for 12 months after the acute symptomatic first seizure. Primary endpoint was the occurrence and timing of a first unprovoked seizure relapse. In addition, neuro-intensivists in Germany were interviewed about their antiseizure treatment strategies through an anonymous online survey. RESULTS: Eleven of 122 participants with structural etiology had an unprovoked seizure relapse, resulting in a cumulative 12-month risk of 10.7% (95%CI, 4.7%-16.7%). None of 19 participants with a non-structural etiology had a subsequent unprovoked seizure. Compared to structural etiology alone, combined infectious and structural etiology was independently associated with unprovoked seizure relapse (OR 11.1; 95%CI, 1.8-69.7). Median duration of antiseizure treatment was 3.4 months (IQR 0-9.3). Seven out of 11 participants had their unprovoked seizure relapse while taking antiseizure medication; longer treatment durations were not associated with decreased risk of unprovoked seizure relapse. Following the non-representative online survey, most neuro-intensivists consider 3 months or less of antiseizure medication to be adequate. CONCLUSIONS: Even in case of structural etiology, acute symptomatic seizures bear a low risk of subsequent unprovoked seizures. There is still no evidence favoring long-term treatments with antiseizure medications. Hence, individual constellations with an increased risk of unprovoked seizure relapse should be identified, such as central nervous system infections causing structural brain damage. However, in the absence of high-risk features, antiseizure medications should be discontinued early to avoid overtreatment.
RESUMEN
BACKGROUND AND OBJECTIVES: In 2020, a wide range of hygiene measures was implemented to mitigate infections caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In consequence, pulmonary infections due to other respiratory pathogens also decreased. Here, we evaluated the number of bacterial and viral meningitis and encephalitis cases during the coronavirus disease 2019 (COVID-19) pandemic. METHODS: In a multicentre retrospective analysis of data from January 2016 until December 2020, numbers of patients diagnosed with bacterial meningitis and other types of CNS infections (such as viral meningitis and encephalitis) at 26 German hospitals were studied. Furthermore, the number of common meningitis-preceding ear-nose-throat infections (sinusitis, mastoiditis and otitis media) was evaluated. RESULTS: Compared to the previous years, the total number of patients diagnosed with pneumococcal meningitis was reduced (n = 64 patients/year in 2020 vs. n = 87 to 120 patients/year between 2016 and 2019, all p < 0.05). Additionally, the total number of patients diagnosed with otolaryngological infections was significantly lower (n = 1181 patients/year in 2020 vs. n = 1525 to 1754 patients/year between 2016 and 2019, all p < 0.001). We also observed a decline in viral meningitis and especially enterovirus meningitis (n = 25 patients/year in 2020 vs. n = 97 to 181 patients/year between 2016 and 2019, all p < 0.001). DISCUSSION: This multicentre retrospective analysis demonstrates a decline in the number of patients treated for viral and pneumococcal meningitis as well as otolaryngological infections in 2020 compared to previous years. Since the latter often precedes pneumococcal meningitis, this may point to the significance of the direct spread of pneumococci from an otolaryngological focus such as mastoiditis to the brain as one important pathophysiological route in the development of pneumococcal meningitis.
Asunto(s)
COVID-19 , Encefalitis , Mastoiditis , Meningitis Neumocócica , Meningitis Viral , COVID-19/epidemiología , Hospitales , Humanos , Meningitis Neumocócica/epidemiología , Meningitis Neumocócica/microbiología , Meningitis Viral/epidemiología , Pandemias , Estudios Retrospectivos , SARS-CoV-2RESUMEN
Peri-infarct opening of the blood-brain barrier may be associated with spreading depolarizations, seizures, and epileptogenesis as well as cognitive dysfunction. We aimed to investigate the mechanisms underlying neural network pathophysiology in the blood-brain barrier-dysfunctional hippocampus. Photothrombotic stroke within the rat neocortex was associated with increased intracranial pressure, vasogenic edema, and peri-ischemic blood-brain barrier dysfunction that included the ipsilateral hippocampus. Intrahippocampal recordings revealed electrographic seizures within the first week in two-thirds of animals, accompanied by a reduction in gamma and increase in theta frequency bands. Synaptic interactions were studied in parasagittal hippocampal slices at 24 h and seven days post-stroke. Field potential recordings in CA1 and CA3 uncovered multiple population spikes, epileptiform episodes, and spreading depolarizations at 24 h. Input-output analysis revealed that fEPSP-spike coupling was significantly enhanced at seven days. In addition, CA1 feedback and feedforward inhibition were diminished. Slices generating epileptiform activity at seven days revealed impaired bidirectional long-term plasticity following high and low-frequency stimulation protocols. Microarray and PCR data confirmed changes in expression of astrocyte-related genes and suggested downregulation in expression of GABAA-receptor subunits. We conclude that blood-brain barrier dysfunction in the peri-infarct hippocampus is associated with early disinhibition, hyperexcitability, and abnormal synaptic plasticity.