Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Plant Cell Environ ; 40(2): 237-248, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28026874

RESUMEN

Laboratory studies on artificial leaves suggest that leaf thermal dynamics are strongly influenced by the two-dimensional size and shape of leaves and associated boundary layer thickness. Hot environments are therefore said to favour selection for small, narrow or dissected leaves. Empirical evidence from real leaves under field conditions is scant and traditionally based on point measurements that do not capture spatial variation in heat load. We used thermal imagery under field conditions to measure the leaf thermal time constant (τ) in summer and the leaf-to-air temperature difference (∆T) and temperature range across laminae (Trange ) during winter, autumn and summer for 68 Proteaceae species. We investigated the influence of leaf area and margin complexity relative to effective leaf width (we ), the latter being a more direct indicator of boundary layer thickness. Normalized difference of margin complexity had no or weak effects on thermal dynamics, but we strongly predicted τ and ∆T, whereas leaf area influenced Trange . Unlike artificial leaves, however, spatial temperature distribution in large leaves appeared to be governed largely by structural variation. Therefore, we agree that small size, specifically we , has adaptive value in hot environments but not with the idea that thermal regulation is the primary evolutionary driver of leaf dissection.


Asunto(s)
Modelos Biológicos , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Temperatura , Aire , Procesamiento de Imagen Asistido por Computador , Proteaceae/anatomía & histología , Proteaceae/fisiología , Factores de Tiempo
2.
New Phytol ; 194(2): 477-487, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22296328

RESUMEN

Transient lulls in air movement are rarely measured, but can cause leaf temperature to rise rapidly to critical levels. The high heat capacity of thick leaves can damp this rapid change in temperature. However, little is known about the extent to which increased leaf thickness can reduce thermal damage, or how thick leaves would need to be to have biological significance. We evaluated quantitatively the contribution of small increases in leaf thickness to the reduction in thermal damage during critically low wind speeds under desert conditions. We employed a numerical model to investigate the effect of thickness relative to transpiration, absorptance and leaf size on damage avoidance. We used measured traits and thermotolerance thresholds of real leaves to calculate the leaf temperature response to naturally occurring variable low wind speed. Our results demonstrated that an increase in thickness of only fractions of a millimetre can prevent excursions to damaging high temperatures. This damping effect of increased thickness was greatest when other means of reducing leaf temperature (transpiration, reflectance or reduced size) were lacking. For perennial desert flora, we propose that increased leaf thickness is important in decreasing the incidence of extreme heat stress and, in some species, in enhancing long-term survival.


Asunto(s)
Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Temperatura , Viento , Absorción , California , Clima Desértico , Modelos Biológicos , Tamaño de los Órganos , Transpiración de Plantas/fisiología , Plantas/anatomía & histología , Carácter Cuantitativo Heredable , Estaciones del Año , Especificidad de la Especie
3.
New Phytol ; 189(2): 459-70, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20880226

RESUMEN

This study investigates the functional significance of heterophylly in Ginkgo biloba, where leaves borne on short shoots are ontogenetically distinct from those on long shoots. Short shoots are compact, with minimal internodal elongation; their leaves are supplied with water through mature branches. Long shoots extend the canopy and have significant internodal elongation; their expanding leaves receive water from a shoot that is itself maturing. Morphology, stomatal traits, hydraulic architecture, Huber values, water transport efficiency, in situ gas exchange and laboratory-based steady-state hydraulic conductance were examined for each leaf type. Both structure and physiology differed markedly between the two leaf types. Short-shoot leaves were thinner and had higher vein density, lower stomatal pore index, smaller bundle sheath extensions and lower hydraulic conductance than long-shoot leaves. Long shoots had lower xylem area:leaf area ratios than short shoots during leaf expansion, but this ratio was reversed at shoot maturity. Long-shoot leaves had higher rates of photosynthesis, stomatal conductance and transpiration than short-shoot leaves. We propose that structural differences between the two G. biloba leaf types reflect greater hydraulic limitation of long-shoot leaves during expansion. In turn, differences in physiological performance of short- and long-shoot leaves correspond to their distinct ontogeny and architecture.


Asunto(s)
Ginkgo biloba/anatomía & histología , Ginkgo biloba/fisiología , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Agua/fisiología , Gases/metabolismo , Ginkgo biloba/citología , Tamaño de los Órganos , Permeabilidad , Hojas de la Planta/citología , Brotes de la Planta/anatomía & histología
4.
Plant Biol (Stuttg) ; 22(3): 500-513, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32011086

RESUMEN

Polyploidy (the state of having more than two genome copies) is widely distributed in flowering plants and can vary within species, with polyploid races often associated with broad ecological tolerances. Polyploidy may influence within-species variation in seed development, germination and establishment. We hypothesized that interactions between polyploidy and the seed developmental environment would affect subsequent dormancy, germination and early growth traits, particularly in stressful environments. Using seeds developed in a common garden under ambient and warmed conditions, we conducted germination trials under drought and temperature stress, and monitored the subsequent growth of seedlings. The study species, Themeda triandra, is a widespread, keystone, Australian native grass and a known polyploid complex. Tetraploid plants produced heavier, more viable seeds than diploids. Tetraploids were significantly more dormant than diploids, regardless of seed developmental environment. Non-dormant tetraploids were more sensitive to germination stress compared to non-dormant diploids. Finally, tetraploid seedlings were larger and grew faster than diploids, usually when maternal plants were exposed to developmental temperatures atypical to the source environment. Seed and seedling traits suggest tetraploids are generally better adapted to stressful environments than diploids. Because tetraploid seeds of T. triandra are more dormant they are less likely to germinate under stress, and when they do germinate, seedling growth is rapid and independent of seed developmental environment. These novel results demonstrate that polyploidy, sometimes in interaction with developmental environment and possibly also asexuality, can have within-species variation in seed and seedling traits that increase fitness in stressful environments.


Asunto(s)
Latencia en las Plantas , Poaceae , Poliploidía , Plantones , Semillas , Estrés Fisiológico , Australia , Clima , Germinación , Latencia en las Plantas/genética , Plantones/genética , Semillas/genética , Estrés Fisiológico/genética
5.
Oecologia ; 115(1-2): 102-113, 1998 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28308440

RESUMEN

Populations of dioecious plant species often exhibit biased sex ratios. Such biases may arise as a result of sex-based differences in life history traits, or as a result of spatial segregation of the sexes. Of these, sex-based differentiation in life history traits is likely to be the most common cause of bias. In dioecious species, selection can act upon the sexes in a somewhat independent way, leading to differentiation and evolution toward sex-specific ecological optima. I examined sex ratio variation and spatial distribution of the tropical dioecious shrub Siparuna grandiflora to determine whether populations exhibited a biased sex ratio, and if so, whether the bias could be explained in terms of non-random spatial distribution or sex-based differentiation in life history traits. Sex ratio bias was tested using contingency tables, a logistic regression approach was utilized to examine variation in life history traits, and spatial distributions were analyzed using Ripley's K, a second-order neighborhood analysis. I found that although populations of S. grandiflora have a male-biased sex ratio within and among years, there was no evidence of spatial segregation of the sexes. Rather, the sex ratio bias was shown to result primarily from sex-based differentiation in life history traits; males reproduce at a smaller size and more frequently than females. The sexes also differ in the relationship between plant size and reproductive frequency. Light availability was shown to affect reproductive activity in both sexes, though among infrequently flowering plants, females require higher light levels than males to flower. The results of this study demonstrate that ecologically significant sex-based differentiation has evolved in S. grandiflora.

6.
Plant Biol (Stuttg) ; 6(5): 621-8, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15375734

RESUMEN

Herbivory is an important selection pressure in the life history of plants. Most studies use seed or fruit production as an indication of plant fitness, but the impact of herbivory on male reproductive success is usually ignored. It is possible that plants compensate for resources lost to herbivory by shifting the allocation from seed production to pollen production and export, or vice versa. This study examined the impact of herbivory by Helix aspersa on both male and female reproductive traits of a monoecious plant, Cucumis sativus. The effects of herbivory on the relative allocation to male and female flowers were assessed through measurements of the number and size of flowers of both sexes, and the amount of pollinator visitation. We performed two glasshouse experiments; the first looked at the impact of three levels of pre-flowering herbivory, and the second looked at four levels of herbivory after the plants had started to flower. We found that herbivory during the flowering phase led to a significant increase in the number of plants without male flowers. As a consequence there was significantly less pollen export from this population, as estimated by movement of a pollen analog. The size of female flowers was reduced by severe herbivory, but there was no affect on pollen receipt by the female flowers of damaged plants. The decrease in allocation to male function after severe herbivory may be adaptive when male reproductive success is very unpredictable.


Asunto(s)
Cucumis sativus/fisiología , Animales , Cucumis sativus/genética , Dieta , Flores/fisiología , Polen/fisiología , Reproducción , Caracoles
7.
Conserv Physiol ; 2(1): cou015, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-27293636

RESUMEN

The life stages of seed germination and seedling establishment play a vital role in maintaining plant populations and determining range dynamics of species. Thus, it is not surprising that specific germination requirements and dormancy mechanisms have evolved in all major angiosperm clades. In a rapidly changing climate, we face growing pressure to manage, conserve and restore native plant species and communities. To achieve these aims, we require solid knowledge of whether and how seed germination requirements and dormancy status vary between different populations of a given species and how germination strategies may be affected by warming climatic conditions. We assessed the effect of decreasing durations of cold stratification (i.e. conditions representing a shortened winter as predicted under climate change) on germination and dormancy of the alpine herb Aciphylla glacialis. Our results confirmed previous research showing that A. glacialis seeds possess physiological dormancy that can be alleviated by cold stratification. In addition, the results demonstrated that A. glacialis seeds have underdeveloped embryos at dispersal; these grow to germinable size following 4-9 weeks at both constant 5°C and 10-5°C (day-night) temperatures. We conclude that A. glacialis exhibits morphophysiological dormancy. Furthermore, we found that the final percentage germination and dormancy status varied significantly among natural populations and that this variation did not correlate with elevation at the site of seed origin. Seeds germinated following 6-8 weeks of cold stratification, and seedlings showed no detrimental effects as a result of shorter stratification periods. Together, these results suggest that reduced duration of winter is unlikely to have direct negative impacts on germination or early seedling growth in A. glacialis. The causes and implications of the population variation in germination traits are discussed.

8.
Trends Plant Sci ; 15(12): 684-92, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20970368

RESUMEN

Climate change is altering the availability of resources and the conditions that are crucial to plant performance. One way plants will respond to these changes is through environmentally induced shifts in phenotype (phenotypic plasticity). Understanding plastic responses is crucial for predicting and managing the effects of climate change on native species as well as crop plants. Here, we provide a toolbox with definitions of key theoretical elements and a synthesis of the current understanding of the molecular and genetic mechanisms underlying plasticity relevant to climate change. By bringing ecological, evolutionary, physiological and molecular perspectives together, we hope to provide clear directives for future research and stimulate cross-disciplinary dialogue on the relevance of phenotypic plasticity under climate change.


Asunto(s)
Cambio Climático , Fenómenos Fisiológicos de las Plantas , Adaptación Fisiológica , Flores/fisiología , Plantas/genética , Semillas/fisiología
9.
Oecologia ; 154(4): 625-35, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17943318

RESUMEN

The thermal response of gas exchange varies among plant species and with growth conditions. Plants from hot dry climates generally reach maximal photosynthetic rates at higher temperatures than species from temperate climates. Likewise, species in these environments are predicted to have small leaves with more-dissected shapes. We compared eight species of Pelargonium (Geraniaceae) selected as phylogenetically independent contrasts on leaf shape to determine whether: (1) the species showed plasticity in thermal response of gas exchange when grown under different water and temperature regimes, (2) there were differences among more- and less-dissected leafed species in trait means or plasticity, and (3) whether climatic variables were correlated with the responses. We found that a higher growth temperature led to higher optimal photosynthetic temperatures, at a cost to photosynthetic capacity. Optimal temperatures for photosynthesis were greater than the highest growth temperature regime. Stomatal conductance responded to growth water regime but not growth temperature, whereas transpiration increased and water use efficiency (WUE) decreased at the higher growth temperature. Strikingly, species with more-dissected leaves had higher rates of carbon gain and water loss for a given growth condition than those with less-dissected leaves. Species from lower latitudes and lower rainfall tended to have higher photosynthetic maxima and conductance, but leaf dissection did not correlate with climatic variables. Our results suggest that the combination of dissected leaves, higher photosynthetic rates, and relatively low WUE may have evolved as a strategy to optimize water delivery and carbon gain during short-lived periods of high soil moisture. Higher thermal optima, in conjunction with leaf dissection, may reflect selection pressure to protect photosynthetic machinery against excessive leaf temperatures when stomata close in response to water stress.


Asunto(s)
Aclimatación/fisiología , Pelargonium/metabolismo , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Temperatura , Pelargonium/anatomía & histología , Hojas de la Planta/anatomía & histología , Transpiración de Plantas/fisiología , Lluvia , Agua/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda