RESUMEN
BACKGROUND: Gut microbiota have been implicated in atherosclerotic disease, but their relation with subclinical coronary atherosclerosis is unclear. This study aimed to identify associations between the gut microbiome and computed tomography-based measures of coronary atherosclerosis and to explore relevant clinical correlates. METHODS: We conducted a cross-sectional study of 8973 participants (50 to 65 years of age) without overt atherosclerotic disease from the population-based SCAPIS (Swedish Cardiopulmonary Bioimage Study). Coronary atherosclerosis was measured using coronary artery calcium score and coronary computed tomography angiography. Gut microbiota species abundance and functional potential were assessed with shotgun metagenomics sequencing of fecal samples, and associations with coronary atherosclerosis were evaluated with multivariable regression models adjusted for cardiovascular risk factors. Associated species were evaluated for association with inflammatory markers, metabolites, and corresponding species in saliva. RESULTS: The mean age of the study sample was 57.4 years, and 53.7% were female. Coronary artery calcification was detected in 40.3%, and 5.4% had at least 1 stenosis with >50% occlusion. Sixty-four species were associated with coronary artery calcium score independent of cardiovascular risk factors, with the strongest associations observed for Streptococcus anginosus and Streptococcus oralis subsp oralis (P<1×10-5). Associations were largely similar across coronary computed tomography angiography-based measurements. Out of the 64 species, 19 species, including streptococci and other species commonly found in the oral cavity, were associated with high-sensitivity C-reactive protein plasma concentrations, and 16 with neutrophil counts. Gut microbial species that are commonly found in the oral cavity were negatively associated with plasma indole propionate and positively associated with plasma secondary bile acids and imidazole propionate. Five species, including 3 streptococci, correlated with the same species in saliva and were associated with worse dental health in the Malmö Offspring Dental Study. Microbial functional potential of dissimilatory nitrate reduction, anaerobic fatty acid ß-oxidation, and amino acid degradation were associated with coronary artery calcium score. CONCLUSIONS: This study provides evidence of an association of a gut microbiota composition characterized by increased abundance of Streptococcus spp and other species commonly found in the oral cavity with coronary atherosclerosis and systemic inflammation markers. Further longitudinal and experimental studies are warranted to explore the potential implications of a bacterial component in atherogenesis.
Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Humanos , Femenino , Persona de Mediana Edad , Masculino , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/epidemiología , Estudios Transversales , Calcio , Aterosclerosis/epidemiología , StreptococcusRESUMEN
We assayed blood/tissue fluid samples from 20 harbour porpoises Phocoena phocoena from western Greenland coastal waters for antibodies against the protozoan parasite Toxoplasma gondii by the direct agglutination test (DAT). Nine individuals (45%) were interpreted to be seropositive at 1:40 dilution and 4 (20%) were seropositive up to 1:160. Samples from these individuals were assayed by an enzyme-linked immunosorbent assay (ELISA), and tissue samples of the DAT-positive animals were tested by a nested polymerase chain reaction (nPCR). Results from both methods were negative, suggesting the absence of infection in the tested animals. After chloroform clean-up, all were negative when re-assayed by DAT. We concluded that infection with T. gondii was absent in all 20 animals, despite the initially positive DAT results, and that the false positives resulted from non-specific adherence to tachyzoites in the DAT assay which could be removed by the chloroform clean-up method. Our results suggest that detecting antibodies against T. gondii using the DAT or the modified agglutination technique, particularly on samples from Arctic marine animals which often are rich in lipids, may lead to false positive results. For such samples, the use of ELISA or PCR on available tissue samples may be advocated as confirmatory tests in order to avoid false positives and overestimating seroprevalence.
Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Marsopas/sangre , Toxoplasma/inmunología , Toxoplasmosis Animal/sangre , Animales , Anticuerpos Antiprotozoarios/inmunología , ADN Protozoario , Femenino , Groenlandia/epidemiología , Masculino , Estudios Seroepidemiológicos , Toxoplasmosis Animal/epidemiología , Toxoplasmosis Animal/inmunologíaRESUMEN
The North Water polynya (~76°N to 79°N and 70°W to 80°W) is known to be an important habitat for several species of marine mammals and sea birds. For millennia, it has provided the basis for subsistence hunting and human presence in the northernmost part of Baffin Bay. The abundance of air-breathing top predators also represents a potential source of nutrient cycling that maintains primary production. In this study, aerial surveys conducted in 2009 and 2010 were used for the first time to map the distribution and estimate the abundance of top predators during spring in the North Water. Belugas (Delphinapterus leucas) were not detected north of 77°20'N but were found along the coast of West Greenland and offshore in the middle of the North Water with an abundance estimated at 2245 (95 % CI 1811-2783). Narwhals (Monodon monoceros) were widely distributed on the eastern side of the North Water with an estimate of abundance of 7726 (3761-15 870). Walruses (Odobenus rosmarus) were found across the North Water over both shallow and deep (>500 m) water with an estimated abundance of 1499 (1077-2087). Bearded (Erignathus barbatus) and ringed seals (Phoca hispida) used the large floes of ice in the southeastern part of the North Water for hauling out. Most polar bears (Ursus maritimus) were detected in the southern part of the polynya. The abundances of bearded and ringed seals were 6016 (3322-10 893) and 9529 (5460-16 632), respectively, and that of polar bears was 60 (12-292). Three sea bird species were distributed along the Greenland coast (eiders, Somateria spp.), in leads and cracks close to the Greenland coast (little auks, Alle alle) or widely in open water (thick-billed guillemots, Uria lomvia).
Asunto(s)
Biodiversidad , Cubierta de Hielo , Animales , Anseriformes , Regiones Árticas , Charadriiformes , Cadena Alimentaria , Groenlandia , Océanos y Mares , Densidad de Población , Phocidae , Ursidae , Morsas , BallenasRESUMEN
Human gut microbiota produce a variety of molecules, some of which enter the bloodstream and impact health. Conversely, dietary or pharmacological compounds may affect the microbiota before entering the circulation. Characterization of these interactions is an important step towards understanding the effects of the gut microbiota on health. In this cross-sectional study, we used deep metagenomic sequencing and ultra-high-performance liquid chromatography linked to mass spectrometry for a detailed characterization of the gut microbiota and plasma metabolome, respectively, of 8583 participants invited at age 50 to 64 from the population-based Swedish CArdioPulmonary bioImage Study. Here, we find that the gut microbiota explain up to 58% of the variance of individual plasma metabolites and we present 997 associations between alpha diversity and plasma metabolites and 546,819 associations between specific gut metagenomic species and plasma metabolites in an online atlas ( https://gutsyatlas.serve.scilifelab.se/ ). We exemplify the potential of this resource by presenting novel associations between dietary factors and oral medication with the gut microbiome, and microbial species strongly associated with the uremic toxin p-cresol sulfate. This resource can be used as the basis for targeted studies of perturbation of specific metabolites and for identification of candidate plasma biomarkers of gut microbiota composition.
Asunto(s)
Microbioma Gastrointestinal , Biomarcadores , Estudios Transversales , Microbioma Gastrointestinal/genética , Humanos , Metaboloma , Metabolómica/métodos , Persona de Mediana Edad , Tóxinas UrémicasRESUMEN
There has been a considerable number of reports on Hg concentrations in Arctic mammals since the last Arctic Monitoring and Assessment Programme (AMAP) effort to review biological effects of the exposure to mercury (Hg) in Arctic biota in 2010 and 2018. Here, we provide an update on the state of the knowledge of health risk associated with Hg concentrations in Arctic marine and terrestrial mammal species. Using available population-specific data post-2000, our ultimate goal is to provide an updated evidence-based estimate of the risk for adverse health effects from Hg exposure in Arctic mammal species at the individual and population level. Tissue residues of Hg in 13 species across the Arctic were classified into five risk categories (from No risk to Severe risk) based on critical tissue concentrations derived from experimental studies on harp seals and mink. Exposure to Hg lead to low or no risk for health effects in most populations of marine and terrestrial mammals, however, subpopulations of polar bears, pilot whales, narwhals, beluga and hooded seals are highly exposed in geographic hotspots raising concern for Hg-induced toxicological effects. About 6% of a total of 3500 individuals, across different marine mammal species, age groups and regions, are at high or severe risk of health effects from Hg exposure. The corresponding figure for the 12 terrestrial species, regions and age groups was as low as 0.3% of a total of 731 individuals analyzed for their Hg loads. Temporal analyses indicated that the proportion of polar bears at low or moderate risk has increased in East/West Greenland and Western Hudson Bay, respectively. However, there remain numerous knowledge gaps to improve risk assessments of Hg exposure in Arctic mammalian species, including the establishment of improved concentration thresholds and upscaling to the assessment of population-level effects.
Asunto(s)
Caniformia , Mercurio , Phocidae , Ursidae , Animales , Regiones Árticas , Monitoreo del Ambiente , Mamíferos , Mercurio/toxicidad , Medición de RiesgoRESUMEN
The narwhal (Monodon monoceros) is a high-Arctic species inhabiting areas that are experiencing increases in sea temperatures, which together with reduction in sea ice are expected to modify the niches of several Arctic marine apex predators. The Scoresby Sound fjord complex in East Greenland is the summer residence for an isolated population of narwhals. The movements of 12 whales instrumented with Fastloc-GPS transmitters were studied during summer in Scoresby Sound and at their offshore winter ground in 2017-2019. An additional four narwhals provided detailed hydrographic profiles on both summer and winter grounds. Data on diving of the whales were obtained from 20 satellite-linked time-depth recorders and 16 Acousonde™ recorders that also provided information on the temperature and depth of buzzes. In summer, the foraging whales targeted depths between 300 and 850 m where the preferred areas visited by the whales had temperatures ranging between 0.6 and 1.5°C (mean = 1.1°C, SD = 0.22). The highest probability of buzzing activity during summer was at a temperature of 0.7°C and at depths > 300 m. The whales targeted similar depths at their offshore winter ground where the temperature was slightly higher (range: 0.7-1.7°C, mean = 1.3°C, SD = 0.29). Both the probability of buzzing events and the spatial distribution of the whales in both seasons demonstrated a preferential selection of cold water. This was particularly pronounced in winter where cold coastal water was selected and warm Atlantic water farther offshore was avoided. It is unknown if the small temperature niche of whales while feeding is because prey is concentrated at these temperature gradients and is easier to capture at low temperatures, or because there are limitations in the thermoregulation of the whales. In any case, the small niche requirements together with their strong site fidelity emphasize the sensitivity of narwhals to changes in the thermal characteristics of their habitats.
RESUMEN
The bowhead whale (Balaena mysticetus) is estimated to live over 200 years and is possibly the longest-living mammal. These animals should possess protective molecular adaptations relevant to age-related diseases, particularly cancer. Here, we report the sequencing and comparative analysis of the bowhead whale genome and two transcriptomes from different populations. Our analysis identifies genes under positive selection and bowhead-specific mutations in genes linked to cancer and aging. In addition, we identify gene gain and loss involving genes associated with DNA repair, cell-cycle regulation, cancer, and aging. Our results expand our understanding of the evolution of mammalian longevity and suggest possible players involved in adaptive genetic changes conferring cancer resistance. We also found potentially relevant changes in genes related to additional processes, including thermoregulation, sensory perception, dietary adaptations, and immune response. Our data are made available online (http://www.bowhead-whale.org) to facilitate research in this long-lived species.
Asunto(s)
Ballena de Groenlandia/genética , Evolución Molecular , Longevidad/genética , Animales , Genoma , Humanos , Selección Genética , Análisis de Secuencia de ADNRESUMEN
The effects of climate change on marine ecosystems and in particular on marine top predators are difficult to assess due to, among other things, spatial variability, and lack of clear delineation of marine habitats. The banks of West Greenland are located in a climate sensitive area and are likely to elicit pronounced responses to oceanographic changes in the North Atlantic. The recent increase in sea temperatures on the banks of West Greenland has had cascading effects on sea ice coverage, residency of top predators, and abundance of important prey species like Atlantic cod (Gadus morhua). Here, we report on the response of one of the top predators in West Greenland; the harbour porpoise (Phocoena phocoena). The porpoises depend on locating high densities of prey species with high nutritive value and they have apparently responded to the general warming on the banks of West Greenland by longer residence times, increased consumption of Atlantic cod resulting in improved body condition in the form of larger fat deposits in blubber, compared to the situation during a cold period in the 1990s. This is one of the few examples of a measurable effect of climate change on a marine mammal population.