Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Materials (Basel) ; 14(6)2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799619

RESUMEN

This paper outlines notable advances in the wire electrical discharge machining of polycrystalline silicon workpieces for wafer preparation. Our use of assisting electrodes permits the transfer of aluminum particles to the machined surface of the polycrystalline silicon workpieces, to enhance conductivity and alter surface topography regardless of the silicon's crystallographic structure and diamond-type lattice. This in-process surface modification technique was shown to promote material removal and simultaneously preserve the integrity of the machined surfaces with preferable surface textures. In the validation experiment, the 25 mm-thick assisting electrodes deposited a notable concentration of aluminium on the machined surface (~3.87 wt %), which greatly accelerated the rate of material removal (~9.42 mg/s) with minimal surface roughness (Sa ~5.49 µm) and moderate skewness (-0.23). The parameter combination used to obtain the optimal surface roughness (Sa 2.54 µm) was as follows: open voltage (80 V), electrical resistance (1.7 Ω), pulse-on time (30 µs), and electrode thickness (15 mm). In multiple objective optimization, the preferred parameter combination (open voltage = 80 V, resistance = 1.4 Ω, pulse-on time = 60 µs, and assisting electrode thickness = 25 mm) achieved the following appreciable results: surface modification of 3.26 ± 0.61 wt %, material removal rate of 7.08 ± 2.2 mg/min, and surface roughness of Sa = 4.3 ± 1.67 µm.

2.
Materials (Basel) ; 14(2)2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33435438

RESUMEN

This work presents some breakthroughs for obtaining high dimensional accuracy and reliable geometrical tolerance in the joining of stainless-steel powders with heterogeneous substrates. In the laser melting process, the interfacial energy fractions and forces acting at the solid-liquid surface of the melting powders can effectively vary their geometrical shapes and positions before they turn into the liquid phase. When the interfacial free energy is low, the melting powders are near molten, thus the successive volumetric changes can alter the layered geometry and positions. This assumption was validated by a powder-bedding additive manufacturing process to consolidate stainless-steel 316L powders (SLM 316L) on a thin heterogeneous stainless-steel substrate. Experiments were carried out to reveal the effects of the process parameters, such as laser power (100-200 W), exposure duration (50-100 µs) and point distance (35-70 µm) on the resulting material density and porosity and the corresponding dimensional variations. A fractional factorial design of experiment was proposed and the results of which were analyzed statistically using analysis of variances (ANOVA) to identify the influence of each operating factor. High energy densities are required to achieve materials of high density (7.71 g/cm3) or low porosity (3.15%), whereas low energy densities are preferable when the objective is dimensional accuracy (0.016 mm). Thermally induced deflections (~0.108 mm) in the heterogeneous metal substrate were analyzed using curvature plots. Thermally induced deformations can be attributed to volumetric energy density, scanning strategy, and the lay-up orientation. The parametric optimizations for increasing in dimensional accuracy (Z1: ~0.105 mm), or in material density (~7.71 g/cm3) were proven with high conversion rates of 88.2% and 96.4%, respectively, in validation runs.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda