Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Neurochem ; 168(9): 2124-2146, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38808598

RESUMEN

Autism is a neurodevelopmental disorder, the prevalence of which has increased dramatically in the United States over the past two decades. It is characterized by stereotyped behaviors and impairments in social interaction and communication. In this paper, we present evidence that autism can be viewed as a PIN1 deficiency syndrome. Peptidyl-prolyl cis/trans isomerase, NIMA-Interacting 1 (PIN1) is a peptidyl-prolyl cis/trans isomerase, and it has widespread influences in biological organisms. Broadly speaking, PIN1 deficiency is linked to many neurodegenerative diseases, whereas PIN1 over-expression is linked to cancer. Death-associated protein kinase 1 (DAPK1) strongly inhibits PIN1, and the hormone melatonin inhibits DAPK1. Melatonin deficiency is strongly linked to autism. It has recently been shown that glyphosate exposure to rats inhibits melatonin synthesis as a result of increased glutamate release from glial cells and increased expression of metabotropic glutamate receptors. Glyphosate's inhibition of melatonin leads to a reduction in PIN1 availability in neurons. In this paper, we show that PIN1 deficiency can explain many of the unique morphological features of autism, including increased dendritic spine density, missing or thin corpus callosum, and reduced bone density. We show how PIN1 deficiency disrupts the functioning of powerful high-level signaling molecules, such as nuclear factor erythroid 2-related factor 2 (NRF2) and p53. Dysregulation of both of these proteins has been linked to autism. Severe depletion of glutathione in the brain resulting from chronic exposure to oxidative stressors and extracellular glutamate leads to oxidation of the cysteine residue in PIN1, inactivating the protein and further contributing to PIN1 deficiency. Impaired autophagy leads to increased sensitivity of neurons to ferroptosis. It is imperative that further research be conducted to experimentally validate whether the mechanisms described here take place in response to chronic glyphosate exposure and whether this ultimately leads to autism.


Asunto(s)
Trastorno Autístico , Glicina , Glifosato , Peptidilprolil Isomerasa de Interacción con NIMA , Animales , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Humanos , Trastorno Autístico/metabolismo , Trastorno Autístico/patología , Trastorno Autístico/inducido químicamente , Glicina/análogos & derivados , Glicina/metabolismo , Melatonina/farmacología
2.
Cureus ; 15(2): e34872, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36788995

RESUMEN

Human prion protein and prion-like protein misfolding are widely recognized as playing a causal role in many neurodegenerative diseases. Based on in vitro and in vivo experimental evidence relating to prion and prion-like disease, we extrapolate from the compelling evidence that the spike glycoprotein of SARS-CoV-2 contains extended amino acid sequences characteristic of a prion-like protein to infer its potential to cause neurodegenerative disease. We propose that vaccine-induced spike protein synthesis can facilitate the accumulation of toxic prion-like fibrils in neurons. We outline various pathways through which these proteins could be expected to distribute throughout the body. We review both cellular pathologies and the expression of disease that could become more frequent in those who have undergone mRNA vaccination. Specifically, we describe the spike protein's contributions, via its prion-like properties, to neuroinflammation and neurodegenerative diseases; to clotting disorders within the vasculature; to further disease risk due to suppressed prion protein regulation in the context of widely prevalent insulin resistance; and to other health complications. We explain why these prion-like characteristics are more relevant to vaccine-related mRNA-induced spike proteins than natural infection with SARS-CoV-2. We note with an optimism an apparent loss of prion-like properties among the current Omicron variants. We acknowledge that the chain of pathological events described throughout this paper is only hypothetical and not yet verified. We also acknowledge that the evidence we usher in, while grounded in the research literature, is currently largely circumstantial, not direct. Finally, we describe the implications of our findings for the general public, and we briefly discuss public health recommendations we feel need urgent consideration. An earlier version of this article was previously posted to the Authorea preprint server on August 16, 2022.

3.
EXCLI J ; 22: 992-1011, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37927346

RESUMEN

We report on an aggressive, infiltrating, metastatic, and ultimately lethal basaloid type of carcinoma arising shortly after an mRNA vaccination for COVID-19. The wife of the patient, since deceased, gave the consent for publishing the case. The malignancy was of cutaneous origin and the case showed symptoms consistent with Bell's palsy and trigeminal neuralgia beginning four days post-vaccination (right side head temporal pain). The temporal pain was suggestive for inflammation and impairment of T cell immune activation. Magnetic Resonance Imaging (MRI) showed a vascular loop on the left lateral aspect of the 5th cranial root exit of cerebellopontine angle constituting presumably a normal variant and was considered as an unrelated factor to the right-sided palsy and pain symptoms that corresponded to cranial nerves V (trigeminal nerve) and VII (facial nerve). In this study we describe all aspects of this case and discuss possible causal links between the rapid emergence of this metastatic cancer and mRNA vaccination. We place this within the context of multiple immune impairments potentially related to the mRNA injections that would be expected to potentiate more aggressive presentation and progression of cancer. The type of malignancy we describe suggests a population risk for occurrence of a large variety of relatively common basaloid phenotype cancer cells, which may have the potential for metastatic disease. This can be avoidable with early diagnosis and adequate treatment. Since facial paralysis/pain is one of the more common adverse neurological events following mRNA injection, careful inspection of cutaneous/soft tissue should be conducted to rule out malignancy. An extensive literature review is carried out, in order to elucidate the toxicity of mRNA vaccination that may have led to the death of this patient. Preventive and precise routine clinical investigations can potentially avoid future mortalities. See also Figure 1(Fig. 1).

4.
Food Chem Toxicol ; 164: 113008, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35436552

RESUMEN

The mRNA SARS-CoV-2 vaccines were brought to market in response to the public health crises of Covid-19. The utilization of mRNA vaccines in the context of infectious disease has no precedent. The many alterations in the vaccine mRNA hide the mRNA from cellular defenses and promote a longer biological half-life and high production of spike protein. However, the immune response to the vaccine is very different from that to a SARS-CoV-2 infection. In this paper, we present evidence that vaccination induces a profound impairment in type I interferon signaling, which has diverse adverse consequences to human health. Immune cells that have taken up the vaccine nanoparticles release into circulation large numbers of exosomes containing spike protein along with critical microRNAs that induce a signaling response in recipient cells at distant sites. We also identify potential profound disturbances in regulatory control of protein synthesis and cancer surveillance. These disturbances potentially have a causal link to neurodegenerative disease, myocarditis, immune thrombocytopenia, Bell's palsy, liver disease, impaired adaptive immunity, impaired DNA damage response and tumorigenesis. We show evidence from the VAERS database supporting our hypothesis. We believe a comprehensive risk/benefit assessment of the mRNA vaccines questions them as positive contributors to public health.


Asunto(s)
COVID-19 , Exosomas , G-Cuádruplex , Inmunidad Innata , MicroARNs , Enfermedades Neurodegenerativas , Vacunas Sintéticas , Vacunas de ARNm , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Exosomas/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Enfermedades Neurodegenerativas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunación/efectos adversos , Vacunas Sintéticas/efectos adversos , Vacunas de ARNm/efectos adversos
5.
Cureus ; 14(12): e32361, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36514706

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and prions use common pathogenic pathways to induce toxicity in neurons. Infectious prions rapidly activate the p38 mitogen activated protein kinase (MAPK) pathway, and SARS-CoV-2 spike proteins rapidly activate both the p38 MAPK and c-Jun NH2-terminal kinase (JNK) pathways through toll-like receptor signaling, indicating the potential for similar neurotoxicity, causing prion and prion-like disease. In this review, we analyze the roles of autophagy inhibition, molecular mimicry, elevated intracellular p53 levels and reduced Wild-type p53-induced phosphatase 1 (Wip1) and dual-specificity phosphatase (DUSP) expression in neurons in the disease process. The pathways induced by the spike protein via toll-like receptor activation induce both the upregulation of PrPC (the normal isoform of the prion protein, PrP) and the expression of ß amyloid. Through the spike-protein-dependent elevation of p53 levels via ß amyloid metabolism, increased PrPC expression can lead to PrP misfolding and impaired autophagy, generating prion disease. We conclude that, according to the age of the spike protein-exposed patient and the state of their cellular autophagy activity, excess sustained activity of p53 in neurons may be a catalytic factor in neurodegeneration. An autoimmune reaction via molecular mimicry likely also contributes to neurological symptoms. Overall results suggest that neurodegeneration is in part due to the intensity and duration of spike protein exposure, patient advanced age, cellular autophagy activity, and activation, function and regulation of p53. Finally, the neurologically damaging effects can be cumulatively spike-protein dependent, whether exposure is by natural infection or, more substantially, by repeated mRNA vaccination.

6.
Food Chem Toxicol ; 178: 113898, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37331560
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda