Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Comput Mater Sci ; 2022022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34898854

RESUMEN

This study integrates 3D printing and finite element analysis (FEA) to investigate the effect of micro-architectural characteristics on the mechanical properties of porous scaffolds. The studied characteristics include the thickness of the scaffold walls and the number of domains at the cross-section. We use 3D printing to fabricate scaffolds of deliberately designed microstructures to enable strict control of the structures. The longitudinal compressive properties of different scaffolds are first analyzed through experimental testing. Then, FEA is conducted to investigate the mechanical properties and the deformation mechanisms of the scaffolds. We find that decreasing wall thickness leads to failure mechanism transition from wall compression failure to buckling instability. For scaffolds with different wall thicknesses, the failure mechanisms and the critical loads are evaluated using the theory of thin plate buckling. For the characteristic of the number of domains, both experimental and FEA results indicate increasing effective stiffness with increasing domains. Interestingly, we find that with the material properties extracted from a single wall scaffold, the computational models tend to overestimate the effective compression modulus of scaffolds with larger numbers of walls or domains than the experimental data. This observation indicates possible size-dependent material properties in 3D printed structs. Our study demonstrates that integrating experiments and computational modeling can provide fundamental insights into the mechanical properties and deformation mechanisms of micro-architectured scaffolds and unveil unique small-scale material behaviors.

2.
J Appl Mech ; 88(10)2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34840347

RESUMEN

Mechanical properties of porous materials depend on their micro-architectural characteristics. Freeze casting is an effective method to fabricate micro-architectured porous scaffolds. Three key characteristics generated during freeze casting are wall thickness, number of domains at the cross-section, and transverse bridges connecting adjacent walls. To specifically study the effect of these structural characteristics on the mechanics and anisotropic compressive properties of scaffolds, we utilize additive manufacturing, i.e., 3D printing, to fabricate strictly designed cubic scaffolds with varying one characteristic at a time. We then compare strength, toughness, resilience, stiffness, and strain to failure in three orthogonal directions of the scaffolds, including longitudinal and transverse directions. To compare these multidimensional mechanics in a single diagram, we use a previously developed radar chart method to evaluate different scaffolds and unravel the effect of the structural characteristics. We find that the multidimensional mechanics can be effectively tuned by the micro-architectural characteristics. Notably, the buckling resistance of the scaffolds depends on all three structural characteristics. Our results show that an increased number of domains leads to enhanced toughness in all three directions. Increasing wall thickness leads to enhanced mechanical properties but comes at the price of losing small-sized pores, which is not favored for certain applications. In addition, adding transverse bridges increase not only the transverse strength of the scaffolds but also the longitudinal strength as they also enhance the buckling resistance. Our study provides important insights into the structure-property relationships of 3D-printed micro-architectured porous scaffolds.

3.
PLoS One ; 13(9): e0204309, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30265707

RESUMEN

Comparing the functional performance of biological systems often requires comparing multiple mechanical properties. Such analyses, however, are commonly presented using orthogonal plots that compare N ≤ 3 properties. Here, we develop a multidimensional visualization strategy using permutated radar charts (radial, multi-axis plots) to compare the relative performance distributions of mechanical systems on a single graphic across N ≥ 3 properties. Leveraging the fact that radar charts plot data in the form of closed polygonal profiles, we use shape descriptors for quantitative comparisons. We identify mechanical property-function correlations distinctive to rigid, flexible, and damage-tolerant biological materials in the form of structural ties, beams, shells, and foams. We also show that the microstructures of dentin, bone, tendon, skin, and cartilage dictate their tensile performance, exhibiting a trade-off between stiffness and extensibility. Lastly, we compare the feeding versus singing performance of Darwin's finches to demonstrate the potential of radar charts for multidimensional comparisons beyond mechanics of materials.


Asunto(s)
Evolución Biológica , Fenómenos Mecánicos , Porosidad , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda