RESUMEN
Lung cancer is the leading cause of cancer deaths. Besides smoking, epidemiological studies have linked female sex hormones to lung cancer in women; however, the underlying mechanisms remain unclear. Here we report that the receptor activator of nuclear factor-kB (RANK), the key regulator of osteoclastogenesis, is frequently expressed in primary lung tumors, an active RANK pathway correlates with decreased survival, and pharmacologic RANK inhibition reduces tumor growth in patient-derived lung cancer xenografts. Clonal genetic inactivation of KRasG12D in mouse lung epithelial cells markedly impairs the progression of KRasG12D -driven lung cancer, resulting in a significant survival advantage. Mechanistically, RANK rewires energy homeostasis in human and murine lung cancer cells and promotes expansion of lung cancer stem-like cells, which is blocked by inhibiting mitochondrial respiration. Our data also indicate survival differences in KRasG12D -driven lung cancer between male and female mice, and we show that female sex hormones can promote lung cancer progression via the RANK pathway. These data uncover a direct role for RANK in lung cancer and may explain why female sex hormones accelerate lung cancer development. Inhibition of RANK using the approved drug denosumab may be a therapeutic drug candidate for primary lung cancer.
Asunto(s)
Neoplasias Pulmonares/metabolismo , Receptor Activador del Factor Nuclear kappa-B/fisiología , Células Epiteliales Alveolares/metabolismo , Animales , Respiración de la Célula , Células Cultivadas , Metabolismo Energético , Femenino , Hormonas Esteroides Gonadales/fisiología , Homeostasis , Humanos , Pulmón/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Masculino , Ratones , Mitocondrias/metabolismo , Células Madre Neoplásicas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Receptor Activador del Factor Nuclear kappa-B/antagonistas & inhibidores , Receptor Activador del Factor Nuclear kappa-B/genética , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Mucosa Respiratoria/metabolismoRESUMEN
CRISPR-Cas genome-editing nucleases hold substantial promise for developing human therapeutic applications1-6 but identifying unwanted off-target mutations is important for clinical translation7. A well-validated method that can reliably identify off-targets in vivo has not been described to date, which means it is currently unclear whether and how frequently these mutations occur. Here we describe 'verification of in vivo off-targets' (VIVO), a highly sensitive strategy that can robustly identify the genome-wide off-target effects of CRISPR-Cas nucleases in vivo. We use VIVO and a guide RNA deliberately designed to be promiscuous to show that CRISPR-Cas nucleases can induce substantial off-target mutations in mouse livers in vivo. More importantly, we also use VIVO to show that appropriately designed guide RNAs can direct efficient in vivo editing in mouse livers with no detectable off-target mutations. VIVO provides a general strategy for defining and quantifying the off-target effects of gene-editing nucleases in whole organisms, thereby providing a blueprint to foster the development of therapeutic strategies that use in vivo gene editing.
Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Edición Génica/normas , Genoma/genética , Mutación , Especificidad por Sustrato/genética , Animales , Proteínas Asociadas a CRISPR/genética , Femenino , Humanos , Mutación INDEL , Masculino , Ratones , Ratones Endogámicos C57BL , Proproteína Convertasa 9/genética , Transgenes/genéticaRESUMEN
Pooled CRISPR screens are a powerful tool for assessments of gene function. However, conventional analysis is based exclusively on the relative abundance of integrated single guide RNAs (sgRNAs) between populations, which does not discern distinct phenotypes and editing outcomes generated by identical sgRNAs. Here we present CRISPR-UMI, a single-cell lineage-tracing methodology for pooled screening to account for cell heterogeneity. We generated complex sgRNA libraries with unique molecular identifiers (UMIs) that allowed for screening of clonally expanded, individually tagged cells. A proof-of-principle CRISPR-UMI negative-selection screen provided increased sensitivity and robustness compared with conventional analysis by accounting for underlying cellular and editing-outcome heterogeneity and detection of outlier clones. Furthermore, a CRISPR-UMI positive-selection screen uncovered new roadblocks in reprogramming mouse embryonic fibroblasts as pluripotent stem cells, distinguishing reprogramming frequency and speed (i.e., effect size and probability). CRISPR-UMI boosts the predictive power, sensitivity, and information content of pooled CRISPR screens.
Asunto(s)
Sistemas CRISPR-Cas/genética , Linaje de la Célula/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica , ARN Guía de Kinetoplastida , Análisis de la Célula Individual/métodos , Animales , Células Cultivadas , Fibroblastos/citología , Técnicas de Inactivación de Genes , Vectores Genéticos , Ratones , Células Madre Pluripotentes/citología , Retroviridae/genética , Relación Señal-RuidoRESUMEN
Tumour metastasis is the primary cause of mortality in cancer patients and remains the key challenge for cancer therapy. New therapeutic approaches to block inhibitory pathways of the immune system have renewed hopes for the utility of such therapies. Here we show that genetic deletion of the E3 ubiquitin ligase Cbl-b (casitas B-lineage lymphoma-b) or targeted inactivation of its E3 ligase activity licenses natural killer (NK) cells to spontaneously reject metastatic tumours. The TAM tyrosine kinase receptors Tyro3, Axl and Mer (also known as Mertk) were identified as ubiquitylation substrates for Cbl-b. Treatment of wild-type NK cells with a newly developed small molecule TAM kinase inhibitor conferred therapeutic potential, efficiently enhancing anti-metastatic NK cell activity in vivo. Oral or intraperitoneal administration using this TAM inhibitor markedly reduced murine mammary cancer and melanoma metastases dependent on NK cells. We further report that the anticoagulant warfarin exerts anti-metastatic activity in mice via Cbl-b/TAM receptors in NK cells, providing a molecular explanation for a 50-year-old puzzle in cancer biology. This novel TAM/Cbl-b inhibitory pathway shows that it might be possible to develop a 'pill' that awakens the innate immune system to kill cancer metastases.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células Asesinas Naturales/inmunología , Neoplasias Mamarias Experimentales/patología , Melanoma Experimental/patología , Metástasis de la Neoplasia/inmunología , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Anticoagulantes/farmacología , Anticoagulantes/uso terapéutico , Femenino , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/metabolismo , Masculino , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/inmunología , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/genética , Melanoma Experimental/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Metástasis de la Neoplasia/tratamiento farmacológico , Metástasis de la Neoplasia/prevención & control , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-cbl/deficiencia , Proteínas Proto-Oncogénicas c-cbl/genética , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Warfarina/farmacología , Warfarina/uso terapéutico , Tirosina Quinasa c-Mer , Tirosina Quinasa del Receptor AxlRESUMEN
The mutation patterns at Cas9 targeted sites contain unique information regarding the nuclease activity and repair mechanisms in mammalian cells. However, analytical framework for extracting such information are lacking. Here, we present a novel computational platform called Rational InDel Meta-Analysis (RIMA) that enables an in-depth comprehensive analysis of Cas9-induced genetic alterations, especially InDels mutations. RIMA can be used to quantitate the contribution of classical microhomology-mediated end joining (c-MMEJ) pathway in the formation of mutations at Cas9 target sites. We used RIMA to compare mutational signatures at 15 independent Cas9 target sites in human A549 wildtype and A549-POLQ knockout cells to elucidate the role of DNA polymerase θ in c-MMEJ. Moreover, the single nucleotide insertions at the Cas9 target sites represent duplications of preceding nucleotides, suggesting that the flexibility of the Cas9 nuclease domains results in both blunt- and staggered-end cuts. Thymine at the fourth nucleotide before protospacer adjacent motif (PAM) results in a two-fold higher occurrence of single nucleotide InDels compared to guanine at the same position. This study provides a novel approach for the characterization of the Cas9 nucleases with improved accuracy in predicting genome editing outcomes and a potential strategy for homology-independent targeted genomic integration.
Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Reparación del ADN por Unión de Extremidades , Mutación INDEL , Programas Informáticos , Células A549 , Algoritmos , Secuencia de Bases , Línea Celular , ADN Polimerasa Dirigida por ADN/deficiencia , ADN Polimerasa Dirigida por ADN/metabolismo , Conjuntos de Datos como Asunto , Francisella/enzimología , Humanos , Motivos de Nucleótidos , Polimorfismo de Nucleótido Simple , Proteínas Recombinantes/metabolismo , Streptococcus pyogenes/enzimología , Especificidad por Sustrato , ADN Polimerasa thetaRESUMEN
BACKGROUND: Plasma concentration of low-density lipoprotein (LDL) cholesterol is a well-established risk factor for cardiovascular disease. Inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9), which regulates cholesterol homeostasis, has recently emerged as an approach to reduce cholesterol levels. The development of humanized animal models is an important step to validate and study human drug targets, and use of genome and base editing has been proposed as a mean to target disease alleles. RESULTS: To address the lack of validated models to test the safety and efficacy of techniques to target human PCSK9, we generated a liver-specific human PCSK9 knock-in mouse model (hPCSK9-KI). We showed that plasma concentrations of total cholesterol were higher in hPCSK9-KI than in wildtype mice and increased with age. Treatment with evolocumab, a monoclonal antibody that targets human PCSK9, reduced cholesterol levels in hPCSK9-KI but not in wildtype mice, showing that the hypercholesterolemic phenotype was driven by overexpression of human PCSK9. CRISPR-Cas9-mediated genome editing of human PCSK9 reduced plasma levels of human and not mouse PCSK9, and in parallel reduced plasma concentrations of total cholesterol; genome editing of mouse Pcsk9 did not reduce cholesterol levels. Base editing using a guide RNA that targeted human and mouse PCSK9 reduced plasma levels of human and mouse PCSK9 and total cholesterol. In our mouse model, base editing was more precise than genome editing, and no off-target editing nor chromosomal translocations were identified. CONCLUSIONS: Here, we describe a humanized mouse model with liver-specific expression of human PCSK9 and a human-like hypercholesterolemia phenotype, and demonstrate that this mouse can be used to evaluate antibody and gene editing-based (genome and base editing) therapies to modulate the expression of human PCSK9 and reduce cholesterol levels. We predict that this mouse model will be used in the future to understand the efficacy and safety of novel therapeutic approaches for hypercholesterolemia.
Asunto(s)
Colesterol/sangre , Hipercolesterolemia/genética , Hígado/metabolismo , Proproteína Convertasa 9/genética , Animales , Modelos Animales de Enfermedad , Edición Génica , Genoma , Humanos , Hipercolesterolemia/metabolismo , Ratones , Ratones TransgénicosRESUMEN
Oxidative stress plays a key role in late onset diseases including cancer and neurodegenerative diseases such as Huntington disease. Therefore, uncovering regulators of the antioxidant stress responses is important for understanding the course of these diseases. Indeed, the nuclear factor erythroid 2-related factor 2 (NRF2), a master regulator of the cellular antioxidative stress response, is deregulated in both cancer and neurodegeneration. Similar to NRF2, the tumor suppressor Homologous to the E6-AP Carboxyl Terminus (HECT) domain and Ankyrin repeat containing E3 ubiquitin-protein ligase 1 (HACE1) plays a protective role against stress-induced tumorigenesis in mice, but its roles in the antioxidative stress response or its involvement in neurodegeneration have not been investigated. To this end we examined Hace1 WT and KO mice and found that Hace1 KO animals exhibited increased oxidative stress in brain and that the antioxidative stress response was impaired. Moreover, HACE1 was found to be essential for optimal NRF2 activation in cells challenged with oxidative stress, as HACE1 depletion resulted in reduced NRF2 activity, stability, and protein synthesis, leading to lower tolerance against oxidative stress triggers. Strikingly, we found a reduction of HACE1 levels in the striatum of Huntington disease patients, implicating HACE1 in the pathology of Huntington disease. Moreover, ectopic expression of HACE1 in striatal neuronal progenitor cells provided protection against mutant Huntingtin-induced redox imbalance and hypersensitivity to oxidative stress, by augmenting NRF2 functions. These findings reveal that the tumor suppressor HACE1 plays a role in the NRF2 antioxidative stress response pathway and in neurodegeneration.
Asunto(s)
Enfermedad de Huntington/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Western Blotting , Fraccionamiento Celular , Cuerpo Estriado/metabolismo , Cartilla de ADN/genética , Técnica del Anticuerpo Fluorescente , Células HEK293 , Humanos , Proteína Huntingtina , Ratones , Proteínas del Tejido Nervioso/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
Understanding how breaks form and are repaired in the genome depends on the accurate measurement of the frequency and position of DNA double strand breaks (DSBs). This is crucial for identification of a chemical's DNA damage potential and for safe development of therapies, including genome editing technologies. Current DSB sequencing methods suffer from high background levels, the inability to accurately measure low frequency endogenous breaks and high sequencing costs. Here we describe INDUCE-seq, which overcomes these problems, detecting simultaneously the presence of low-level endogenous DSBs caused by physiological processes, and higher-level recurrent breaks induced by restriction enzymes or CRISPR-Cas nucleases. INDUCE-seq exploits an innovative NGS flow cell enrichment method, permitting the digital detection of breaks. It can therefore be used to determine the mechanism of DSB repair and to facilitate safe development of therapeutic genome editing. We further discuss how the method can be adapted to detect other genomic features.
Asunto(s)
Roturas del ADN de Doble Cadena , Edición Génica , Sistemas CRISPR-Cas/genética , ADN/genética , Reparación del ADN/genética , Endonucleasas/genética , Edición Génica/métodos , GenómicaRESUMEN
Genome editing using clustered regularly interspaced short palindromic repeats (CRISPR) has been used to great effect in vitro to allow scientists to more rapidly investigate molecular pathways that may be involved in disease. The logical progression for the CRISPR machinery is to move from bench to bedside into the world of therapeutics and clinical diagnostics. Depending upon the intended therapeutic use of CRISPR, there are as many bioanalytical challenges in order to resolve scientific questions as drug development and regulatory questions. The aim of this article is to highlight bioanalytical challenges associated with such a powerful therapeutic tool, and strategies that may be required to facilitate the clinical development of CRISPR.
Asunto(s)
Técnicas Biosensibles/métodos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Edición Génica/métodos , HumanosRESUMEN
BACKGROUND: The molecular mechanisms leading to a fully differentiated thyrocite are still object of intense study even if it is well known that thyroglobulin, thyroperoxidase, NIS and TSHr are the marker genes of thyroid differentiation. It is also well known that Pax8, TTF-1, Foxe1 and Hhex are the thyroid-enriched transcription factors responsible for the expression of the above genes, thus are responsible for the differentiated thyroid phenotype. In particular, the role of Pax8 in the fully developed thyroid gland was studied in depth and it was established that it plays a key role in thyroid development and differentiation. However, to date the bases for the thyroid-enriched expression of this transcription factor have not been unraveled yet. Here, we report the identification and characterization of a functional thyroid-specific enhancer element located far upstream of the Pax8 gene. RESULTS: We hypothesized that regulatory cis-acting elements are conserved among mammalian genes. Comparison of a genomic region extending for about 100 kb at the 5'-flanking region of the mouse and human Pax8 gene revealed several conserved regions that were tested for enhancer activity in thyroid and non-thyroid cells. Using this approach we identified one putative thyroid-specific regulatory element located 84.6 kb upstream of the Pax8 transcription start site. The in silico data were verified by promoter-reporter assays in thyroid and non-thyroid cells. Interestingly, the identified far upstream element manifested a very high transcriptional activity in the thyroid cell line PC Cl3, but showed no activity in HeLa cells. In addition, the data here reported indicate that the thyroid-enriched transcription factor TTF-1 is able to bind in vitro and in vivo the Pax8 far upstream element, and is capable to activate transcription from it. CONCLUSIONS: Results of this study reveal the presence of a thyroid-specific regulatory element in the 5' upstream region of the Pax8 gene. The identification of this regulatory element represents the first step in the investigation of upstream regulatory mechanisms that control Pax8 transcription during thyroid differentiation and are relevant to further studies on Pax8 as a candidate gene for thyroid dysgenesis.
Asunto(s)
Elementos de Facilitación Genéticos/genética , Genómica , Factores de Transcripción Paired Box/genética , Glándula Tiroides/metabolismo , Región de Flanqueo 5'/genética , Animales , Secuencia Conservada , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Humanos , Ratones , Especificidad de Órganos , Factor de Transcripción PAX8 , Factores de Transcripción Paired Box/metabolismo , Filogenia , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico , Glándula Tiroides/citología , Factores de Transcripción , Transcripción GenéticaRESUMEN
The CRISPR-Cas9 system has increased the speed and precision of genetic editing in cells and animals. However, model generation for drug development is still expensive and time-consuming, demanding more target flexibility and faster turnaround times with high reproducibility. The generation of a tightly controlled ObLiGaRe doxycycline inducible SpCas9 (ODInCas9) transgene and its use in targeted ObLiGaRe results in functional integration into both human and mouse cells culminating in the generation of the ODInCas9 mouse. Genomic editing can be performed in cells of various tissue origins without any detectable gene editing in the absence of doxycycline. Somatic in vivo editing can model non-small cell lung cancer (NSCLC) adenocarcinomas, enabling treatment studies to validate the efficacy of candidate drugs. The ODInCas9 mouse allows robust and tunable genome editing granting flexibility, speed and uniformity at less cost, leading to high throughput and practical preclinical in vivo therapeutic testing.
Asunto(s)
Sistemas CRISPR-Cas/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Descubrimiento de Drogas/métodos , Edición Génica/métodos , Neoplasias Pulmonares/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proteína 9 Asociada a CRISPR/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Doxiciclina/farmacología , Ensayos de Selección de Medicamentos Antitumorales/métodos , Femenino , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Vectores Genéticos/genética , Células HEK293 , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Neoplasias Pulmonares/genética , Masculino , Ratones , Ratones Transgénicos , ARN Guía de Kinetoplastida/genética , Recombinación Genética/efectos de los fármacos , Reproducibilidad de los Resultados , Activación Transcripcional/efectos de los fármacos , Transfección/métodos , Transgenes/genéticaRESUMEN
HACE1 is an E3 ubiquitin ligase with important roles in tumor biology and tissue homeostasis. Loss or mutation of HACE1 has been associated with the occurrence of a variety of neoplasms, but the underlying mechanisms have not been defined yet. Here, we report that HACE1 is frequently mutated in human lung cancer. In mice, loss of Hace1 led to enhanced progression of KRasG12D -driven lung tumors. Additional ablation of the oncogenic GTPase Rac1 partially reduced progression of Hace1-/- lung tumors. RAC2, a novel ubiquitylation target of HACE1, could compensate for the absence of its homolog RAC1 in Hace1-deficient, but not in HACE1-sufficient tumors. Accordingly, ablation of both Rac1 and Rac2 fully averted the increased progression of KRasG12D -driven lung tumors in Hace1-/- mice. In patients with lung cancer, increased expression of HACE1 correlated with reduced levels of RAC1 and RAC2 and prolonged survival, whereas elevated expression of RAC1 and RAC2 was associated with poor prognosis. This work defines HACE1 as a crucial regulator of the oncogenic activity of RAC-family GTPases in lung cancer development. SIGNIFICANCE: These findings reveal that mutation of the tumor suppressor HACE1 disrupts its role as a regulator of the oncogenic activity of RAC-family GTPases in human and murine lung cancer. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/14/3009/F1.large.jpg.
Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinogénesis/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/prevención & control , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Unión al GTP rac/antagonistas & inhibidores , Proteína de Unión al GTP rac1/antagonistas & inhibidores , Animales , Apoptosis , Biomarcadores de Tumor/genética , Carcinogénesis/patología , Proliferación Celular , Humanos , Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Pronóstico , Células Tumorales Cultivadas , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Proteína RCA2 de Unión a GTPRESUMEN
OBJECTIVE: We aim to characterize the causality and molecular and functional underpinnings of HACE1 deficiency in a mouse model of a recessive neurodevelopmental syndrome called spastic paraplegia and psychomotor retardation with or without seizures (SPPRS). METHODS: By exome sequencing, we identified 2 novel homozygous truncating mutations in HACE1 in 3 patients from 2 families, p.Q209* and p.R332*. Furthermore, we performed detailed molecular and phenotypic analyses of Hace1 knock-out (KO) mice and SPPRS patient fibroblasts. RESULTS: We show that Hace1 KO mice display many clinical features of SPPRS including enlarged ventricles, hypoplastic corpus callosum, as well as locomotion and learning deficiencies. Mechanistically, loss of HACE1 results in altered levels and activity of the small guanosine triphosphate (GTP)ase, RAC1. In addition, HACE1 deficiency results in reduction in synaptic puncta number and long-term potentiation in the hippocampus. Similarly, in SPPRS patient-derived fibroblasts, carrying a disruptive HACE1 mutation resembling loss of HACE1 in KO mice, we observed marked upregulation of the total and active, GTP-bound, form of RAC1, along with an induction of RAC1-regulated downstream pathways. CONCLUSIONS: Our results provide a first animal model to dissect this complex human disease syndrome, establishing the first causal proof that a HACE1 deficiency results in decreased synapse number and structural and behavioral neuropathologic features that resemble SPPRS patients.
RESUMEN
Thyroid transcription factor gene 1 (TTF-1) is a homeobox-containing gene involved in thyroid organogenesis. During early thyroid development, the homeobox gene Nkx-2.5 is expressed in thyroid precursor cells coincident with the appearance of TTF-1. The aim of this study was to investigate the molecular mechanisms underlying thyroid-specific gene expression. We show that the Nkx-2.5 C terminus interacts with the TTF-1 homeodomain and, moreover, that the expression of a dominant-negative Nkx-2.5 isoform (N188K) in thyroid cells reduces TTF-1-driven transcription by titrating TTF-1 away from its target DNA. This process reduced the expression of several thyroid-specific genes, including pendrin and thyroglobulin. Similarly, down-regulation of TTF-1 by RNA interference reduced the expression of both genes, whose promoters are sensitive to and directly associate with TTF-1 in the chromatin context. In conclusion, we demonstrate that pendrin and thyroglobulin are downstream targets in vivo of TTF-1, whose action is a prime factor in controlling thyroid differentiation in vivo.
Asunto(s)
Antiportadores de Cloruro-Bicarbonato/fisiología , Regulación de la Expresión Génica , Proteínas de Transporte de Membrana/fisiología , Proteínas Nucleares/fisiología , Neoplasias de la Tiroides/metabolismo , Factores de Transcripción/fisiología , Animales , Secuencia de Bases , Sitios de Unión , Northern Blotting , Western Blotting , Diferenciación Celular , Antiportadores de Cloruro-Bicarbonato/metabolismo , Cromatina , Inmunoprecipitación de Cromatina , ADN/química , Regulación hacia Abajo , Genes Dominantes , Células HeLa , Humanos , Inmunoprecipitación , Intrones , Iones , Proteínas de Transporte de Membrana/metabolismo , Datos de Secuencia Molecular , Proteínas Nucleares/química , Oligonucleótidos/química , Plásmidos/metabolismo , Unión Proteica , Isoformas de Proteínas , Estructura Terciaria de Proteína , Interferencia de ARN , ARN Mensajero/metabolismo , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transportadores de Sulfato , Glándula Tiroides/metabolismo , Factor Nuclear Tiroideo 1 , Factores de Transcripción/química , TransfecciónRESUMEN
α1-antitrypsin (AAT) is a circulating serine protease inhibitor secreted from the liver and important in preventing proteolytic neutrophil elastase associated tissue damage, primarily in lungs. In humans, AAT is encoded by the SERPINA1 (hSERPINA1) gene in which a point mutation (commonly referred to as PiZ) causes aggregation of the miss-folded protein in hepatocytes resulting in subsequent liver damage. In an attempt to rescue the pathologic liver phenotype of a mouse model of human AAT deficiency (AATD), we used adenovirus to deliver Cas9 and a guide-RNA (gRNA) molecule targeting hSERPINA1. Our single dose therapeutic gene editing approach completely reverted the phenotype associated with the PiZ mutation, including circulating transaminase and human AAT (hAAT) protein levels, liver fibrosis and protein aggregation. Furthermore, liver histology was significantly improved regarding inflammation and overall morphology in hSERPINA1 gene edited PiZ mice. Genomic analysis confirmed significant disruption to the hSERPINA1 transgene resulting in a reduction of hAAT protein levels and quantitative mRNA analysis showed a reduction in fibrosis and hepatocyte proliferation as a result of editing. Our findings indicate that therapeutic gene editing in hepatocytes is possible in an AATD mouse model.
Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Fenotipo , Deficiencia de alfa 1-Antitripsina/genética , Deficiencia de alfa 1-Antitripsina/metabolismo , alfa 1-Antitripsina/genética , Adenoviridae/genética , Animales , Proliferación Celular , Modelos Animales de Enfermedad , Expresión Génica , Vectores Genéticos/genética , Humanos , Ratones , Ratones Transgénicos , Transducción Genética , Transgenes , alfa 1-Antitripsina/sangre , alfa 1-Antitripsina/metabolismo , Deficiencia de alfa 1-Antitripsina/patología , Deficiencia de alfa 1-Antitripsina/terapiaRESUMEN
Among the approaches used to provide a functional inactivation of a target protein, we have chosen the recently described oligomerization chain reaction (OCR) strategy to functionally inactivate the transcription factor Pax8, a member of the Pax gene family expressed in thyroid cells. The OCR strategy is based on the fusion of the self-associating coiled-coil (CC) domain of the nuclear factor promyelocytic leukemia (PML) to target proteins that are able to self-associate naturally or that form heterocomplexes. In the thyroid tissue, the transcription factor Pax8 is involved in the morphogenesis of the gland and in the transcriptional regulation of thyroid-expressed genes. We have recently demonstrated that in thyroid cells Pax8 interacts biochemically and functionally with the transcription factor TTF-1 (thyroid transcription factor 1), and that such interaction leads to the synergistic activation of thyroglobulin (Tg) gene expression. Fusion of the CC domain to Pax8 leads to the formation of aberrant, nonfunctional high-molecular mass complexes to which TTF-1 is also recruited. The CC-Pax8 chimera inhibits the transcriptional activity of Pax8 and of TTF-1 on both synthetic and physiological promoters and prevents the synergistic activation of the Tg promoter mediated by these two transcription factors. Furthermore, the expression of the CC-Pax8 chimera in differentiated thyroid cells leads to the down-regulation of the endogenous expression of several differentiation markers such as Tg, sodium/iodide symporter, Foxe1, TTF-1, and thyroid oxidase 2. These results demonstrate that the OCR is a useful tool to functionally inactivate a transcription factor. Moreover, by this approach, we identified Foxe1, TTF-1, and thyroid oxidase 2 as new direct targets of Pax8 or TTF-1.
Asunto(s)
Silenciador del Gen , Factores de Transcripción Paired Box/fisiología , Polímeros/metabolismo , Factores de Transcripción/fisiología , Biomarcadores , Diferenciación Celular , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Oxidasas Duales , Flavoproteínas/genética , Flavoproteínas/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Expresión Génica , Células HeLa , Humanos , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Especificidad de Órganos , Factor de Transcripción PAX8 , Factores de Transcripción Paired Box/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Glándula Tiroides/citología , Distribución Tisular , Factores de Transcripción/metabolismo , TransfecciónRESUMEN
The HECT domain E3 ligase HACE1 has been identified as a tumor suppressor in multiple cancers. Here, we report that HACE1 is a central gatekeeper of TNFR1-induced cell fate. Genetic inactivation of HACE1 inhibits TNF-stimulated NF-κB activation and TNFR1-NF-κB-dependent pathogen clearance in vivo. Moreover, TNF-induced apoptosis was impaired in hace1 mutant cells and knockout mice in vivo. Mechanistically, HACE1 is essential for the ubiquitylation of the adaptor protein TRAF2 and formation of the apoptotic caspase-8 effector complex. Intriguingly, loss of HACE1 does not impair TNFR1-mediated necroptotic cell fate via RIP1 and RIP3 kinases. Loss of HACE1 predisposes animals to colonic inflammation and carcinogenesis in vivo, which is markedly alleviated by genetic inactivation of RIP3 kinase and TNFR1. Thus, HACE1 controls TNF-elicited cell fate decisions and exerts tumor suppressor and anti-inflammatory activities via a TNFR1-RIP3 kinase-necroptosis pathway.
Asunto(s)
Linaje de la Célula , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Caspasa 8/metabolismo , Linaje de la Célula/efectos de los fármacos , Colitis/metabolismo , Colitis/patología , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Sulfato de Dextran , Embrión de Mamíferos/citología , Activación Enzimática/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Eliminación de Gen , Ratones Endogámicos C57BL , Mutación/genética , FN-kappa B/metabolismo , Necrosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Factor 2 Asociado a Receptor de TNF/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Ubiquitinación/efectos de los fármacosRESUMEN
The Pax gene family encodes transcription factors that are essential in organogenesis and in the differentiation of various organs in higher eukaryotes. Pax proteins have a DNA binding domain at the N-terminus, and a transcriptional activation domain at the C-terminus. How these domains interact with the transcriptional machinery of the cell is still unclear. In the present paper, we describe the identification by means of immunological screening of the WW domain binding protein WBP-2 as a biochemical interactor of Pax8 (a WW domain is a protein-interaction domain containing two conserved tryptophan residues). Pax8 is required for the morphogenesis of the thyroid gland and for the maintenance of the thyroid differentiated cellular phenotype. WBP-2 was identified originally as a WW domain binding protein, and its function is still unknown. WBP-2 binds to Pax8 in vitro in pulldown assays, and in vivo in tissue culture cells in co-immunoprecipitation assays. Interestingly, Pax8 does not contain a WW domain. Our results point to the identification of a new protein-interacting domain that is present in the C-terminal portion of Pax8 and that is required for protein-protein interaction with WBP-2. Our results demonstrate that WBP-2 is not a transcriptional co-activator of Pax8, but rather behaves as an adaptor molecule, as suggested in other studies.
Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares , Especificidad de Órganos , Péptidos/metabolismo , Transactivadores/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/biosíntesis , Línea Celular , Línea Celular Tumoral , Proteínas de Unión al ADN/inmunología , Técnica del Anticuerpo Fluorescente Indirecta , Células HeLa/química , Humanos , Ratones , Datos de Secuencia Molecular , Factor de Transcripción PAX8 , Factores de Transcripción Paired Box , Isoformas de Proteínas/química , Estructura Terciaria de Proteína , Ratas , Alineación de Secuencia , Glándula Tiroides/química , Glándula Tiroides/citología , Transactivadores/inmunologíaRESUMEN
Autophagy is a mechanism by which starving cells can control their energy requirements and metabolic states, thus facilitating the survival of cells in stressful environments, in particular in the pathogenesis of cancer. Here we report that tissue-specific inactivation of Atg5, essential for the formation of autophagosomes, markedly impairs the progression of KRas(G12D)-driven lung cancer, resulting in a significant survival advantage of tumour-bearing mice. Autophagy-defective lung cancers exhibit impaired mitochondrial energy homoeostasis, oxidative stress and a constitutively active DNA damage response. Genetic deletion of the tumour suppressor p53 reinstates cancer progression of autophagy-deficient tumours. Although there is improved survival, the onset of Atg5-mutant KRas(G12D)-driven lung tumours is markedly accelerated. Mechanistically, increased oncogenesis maps to regulatory T cells. These results demonstrate that, in KRas(G12D)-driven lung cancer, Atg5-regulated autophagy accelerates tumour progression; however, autophagy also represses early oncogenesis, suggesting a link between deregulated autophagy and regulatory T cell controlled anticancer immunity.
Asunto(s)
Autofagia/fisiología , Modelos Animales de Enfermedad , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/fisiopatología , Proteínas Asociadas a Microtúbulos/fisiología , Animales , Proteína 5 Relacionada con la Autofagia , Progresión de la Enfermedad , Femenino , Eliminación de Gen , Perfilación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos BALB C , Proteínas Asociadas a Microtúbulos/genética , Mutación/genética , Linfocitos T Reguladores/patología , Linfocitos T Reguladores/fisiología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/fisiologíaRESUMEN
The Hace1-HECT E3 ligase is a tumor suppressor that ubiquitylates the activated GTP-bound form of the Rho family GTPase Rac1, leading to Rac1 proteasomal degradation. Here we show that, in vertebrates, Hace1 targets Rac1 for degradation when Rac1 is localized to the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase holoenzyme. This event blocks de novo reactive oxygen species generation by Rac1-dependent NADPH oxidases, and thereby confers cellular protection from reactive oxygen species-induced DNA damage and cyclin D1-driven hyper-proliferation. Genetic inactivation of Hace1 in mice or zebrafish, as well as Hace1 loss in human tumor cell lines or primary murine or human tumors, leads to chronic NADPH oxidase-dependent reactive oxygen species elevation, DNA damage responses and enhanced cyclin D1 expression. Our data reveal a conserved ubiquitin-dependent molecular mechanism that controls the activity of Rac1-dependent NADPH oxidase complexes, and thus constitutes the first known example of a tumor suppressor protein that directly regulates reactive oxygen species production in vertebrates.