Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
BMC Genomics ; 25(1): 691, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004696

RESUMEN

BACKGROUND: Muskoxen are important ecosystem components and provide food, economic opportunities, and cultural well-being for Indigenous communities in the Canadian Arctic. Between 2010 and 2021, Erysipelothrix rhusiopathiae was isolated from carcasses of muskoxen, caribou, a seal, and an Arctic fox during multiple large scale mortality events in the Canadian Arctic Archipelago. A single strain ('Arctic clone') of E. rhusiopathiae was associated with the mortalities on Banks, Victoria and Prince Patrick Islands, Northwest Territories and Nunavut, Canada (2010-2017). The objectives of this study were to (i) characterize the genomes of E. rhusiopathiae isolates obtained from more recent muskox mortalities in the Canadian Arctic in 2019 and 2021; (ii) identify and compare common virulence traits associated with the core genome and mobile genetic elements (i.e. pathogenicity islands and prophages) among Arctic clone versus other E. rhusiopathiae genomes; and iii) use pan-genome wide association studies (GWAS) to determine unique genetic contents of the Arctic clone that may encode virulence traits and that could be used for diagnostic purposes. RESULTS: Phylogenetic analyses revealed that the newly sequenced E. rhusiopathiae isolates from Ellesmere Island, Nunavut (2021) also belong to the Arctic clone. Of 17 virulence genes analysed among 28 Arctic clone isolates, four genes - adhesin, rhusiopathiae surface protein-A (rspA), choline binding protein-B (cbpB) and CDP-glycerol glycerophosphotransferase (tagF) - had amino acid sequence variants unique to this clone when compared to 31 other E. rhusiopathiae genomes. These genes encode proteins that facilitate E. rhusiopathiae to attach to the host endothelial cells and form biofilms. GWAS analyses using Scoary found several unique genes to be overrepresented in the Arctic clone. CONCLUSIONS: The Arctic clone of E. rhusiopathiae was associated with multiple muskox mortalities spanning over a decade and multiple Arctic islands with distances over 1000 km, highlighting the extent of its spatiotemporal spread. This clone possesses unique gene content, as well as amino acid variants in multiple virulence genes that are distinct from the other closely related E. rhusiopathiae isolates. This study establishes an essential foundation on which to investigate whether these differences are correlated with the apparent virulence of this specific clone through in vitro and in vivo studies.


Asunto(s)
Erysipelothrix , Regiones Árticas , Erysipelothrix/genética , Erysipelothrix/patogenicidad , Erysipelothrix/aislamiento & purificación , Canadá , Animales , Virulencia/genética , Genómica , Genoma Bacteriano , Filogenia , Infecciones por Erysipelothrix/microbiología , Factores de Virulencia/genética , Estudio de Asociación del Genoma Completo , Islas Genómicas
2.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38673750

RESUMEN

Bovine respiratory disease (BRD) is the leading cause of morbidity and mortality in cattle raised in North America. At the feedlot, cattle are subject to metaphylactic treatment with macrolides to prevent BRD, a practice that may promote antimicrobial resistance and has resulted in an urgent need for novel strategies. Mannheimia haemolytica is one of the major bacterial agents of BRD. The inhibitory effects of two amphipathic, α-helical (PRW4, WRL3) and one ß-sheet (WK2) antimicrobial peptides were evaluated against multidrug-resistant (MDR) M. haemolytica isolated from Alberta feedlots. WK2 was not cytotoxic against bovine turbinate (BT) cells by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. All three peptides inhibited M. haemolytica, with WK2 being the most efficacious against multiple isolates. At 8-16 µg/mL, WK2 was bactericidal against Mh 330 in broth, and at 32 µg/mL in the presence of BT cells, it reduced the population by 3 logs CFU/mL without causing cytotoxic effects. The membrane integrity of Mh 330 was examined using NPN (1-N-phenylnaphthylamine) and ONPG (o-Nitrophenyl ß-D-galactopyranoside), with both the inner and outer membranes being compromised. Thus, WK2 may be a viable alternative to the use of macrolides as part of BRD prevention and treatment strategies.


Asunto(s)
Péptidos Antimicrobianos , Mannheimia haemolytica , Animales , Bovinos , Antibacterianos/farmacología , Antibacterianos/química , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/química , Complejo Respiratorio Bovino/tratamiento farmacológico , Complejo Respiratorio Bovino/microbiología , Mannheimia haemolytica/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta
3.
Virol J ; 17(1): 3, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31910855

RESUMEN

A previously isolated a bacteriophage, vB_EcoS_AKFV33 of T5virus, demonstrated great potential in biocontrol of Shiga toxigenic Escherichia coli (STEC) O157. This study further evaluated its potential as a biocontrol agent in broth culture against other important non-O157 serogroups of STEC and Salmonella. AKFV33 was capable of lysing isolates of STEC serogroups O26 (n = 1), O145 (n = 1) and Salmonella enterica serovars (n = 6). In a broth culture microplate system, efficacy of AKFV33 for killing STEC O26:H11, O145:NM and Salmonella was improved (P < 0.05) at a lower multiplicity of infection and sampling time (6-10 h), when STEC O157:H7 was also included in the culture. This phage was able to simultaneously reduce numbers of STEC and Salmonella in mixtures with enhanced activity (P < 0.05) against O157:H7 and O26:H11, offering great promise for control of multiple zoonotic pathogens at both pre and post-harvest.


Asunto(s)
Salmonella/crecimiento & desarrollo , Salmonella/virología , Escherichia coli Shiga-Toxigénica/crecimiento & desarrollo , Escherichia coli Shiga-Toxigénica/virología , Siphoviridae/fisiología , Técnicas Bacteriológicas , Agentes de Control Biológico , Salmonella/clasificación , Serogrupo
4.
Appl Microbiol Biotechnol ; 104(18): 7957-7970, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32803295

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) has become a worrisome superbug, due to its wide distribution and multidrug resistance. To characterize effects of a newly identified plantaricin GZ1-27 on MRSA, transcriptomic and proteomic profiling of MRSA strain ATCC43300 was performed in response to sub-MIC (16 µg/mL) plantaricin GZ1-27 stress. In total, 1090 differentially expressed genes (padj < 0.05) and 418 differentially expressed proteins (fold change > 1.2, p < 0.05) were identified. Centralized protein expression clusters were predicted in biological functions (biofilm formation, DNA replication and repair, and heat-shock) and metabolic pathways (purine metabolism, amino acid metabolism, and biosynthesis of secondary metabolites). Moreover, a capacity of inhibition MRSA biofilm formation and killing biofilm cells were verified using crystal violet staining, scanning electron microscopy, and confocal laser-scanning microscopy. These findings yielded comprehensive new data regarding responses induced by plantaricin and could inform evidence-based methods to mitigate MRSA biofilm formation.


Asunto(s)
Bacteriocinas , Staphylococcus aureus Resistente a Meticilina , Antibacterianos/farmacología , Bacteriocinas/genética , Biopelículas , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Proteómica , Transcriptoma
5.
Can J Microbiol ; 66(4): 328-336, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32017602

RESUMEN

This study examined the biofilm-forming ability of six non-O157 Shiga-toxin-producing Escherichia coli (STEC) strains: O116:H21, wzx-Onovel5:H19, O129:H21, O129:H23, O26:H11, and O154:H10 on stainless steel coupons after 24, 48, and 72 h of incubation at 22 °C and after 168 h at 10 °C. The results of crystal violet staining revealed that strains O129:H23 and O154:H10 were able to form biofilms on both the submerged surface and the air-liquid interface of coupons, whereas strains O116:H21, wzx-Onovel5:H19, O129:H21, and O26:H11 formed biofilm only at the air-liquid interface. Viable cell counts and scanning electron microscopy showed that biofilm formation increased (p < 0.05) over time. The biofilm-forming ability of non-O157 STEC was strongest (p < 0.05) at 22 °C after 48 h of incubation. The strongest biofilm former regardless of temperature was O129:H23. Generally, at 10 °C, weak to no biofilm was observed for isolates O154:H10, O116:H21, wzx-Onovel5:H19, O26:H11, and O129:H21 after 168 h. This study found that temperature affected the biofilm-forming ability of non-O157 STEC strains. Overall, our data indicate a high potential for biofilm formation by the isolates at 22 °C, suggesting that non-O157 STEC strains could colonize stainless steel within food-processing facilities. This could serve as a potential source of adulteration and promote the dissemination of these potential pathogens in food.


Asunto(s)
Biopelículas , Manipulación de Alimentos/instrumentación , Escherichia coli Shiga-Toxigénica/fisiología , Contaminación de Equipos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli Shiga-Toxigénica/genética , Escherichia coli Shiga-Toxigénica/crecimiento & desarrollo , Acero Inoxidable/química
6.
Food Microbiol ; 92: 103572, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32950157

RESUMEN

Shiga toxigenic Escherichia coli (STEC) can form biofilms and frequently cause serious foodborne illnesses. A strain of STEC O145:H25 (EC19990166) known to be a strong biofilm former was used to evaluate the efficacy of bacteriophage AZO145A against biofilms formed on stainless steel (SS) coupons. Exposure of STEC O145:H25 to phage AZO145A (1010 PFU/mL) for 2 h resulted in a 4.0 log10 reduction (P < 0.01) of planktonic cells grown in M9 broth at 24 °C for 24 h, while reductions were 2.0 log10 CFU/mL if these cells were grown for 48 h or 72 h prior to phage treatment. STEC O145 biofilms formed on SS coupons for 24, 48 and 72 h were reduced (P < 0.01) 2.9, 1.9 and 1.9 log10 CFU/coupon by phages. STEC O145 cells in biofilms were readily transferred from the surface of the SS coupon to beef (3.6 log10 CFU/coupon) even with as little as 10 s of contact with the meat surface. However, transfer of STEC O145 cells from biofilms that formed on SS coupons for 48 h to beef was reduced (P < 0.01) by 3.1 log10 CFU by phage (2 × 1010 PFU/mL) at 24 °C. Scanning electron microscopy revealed that bacterial cells within indentations on the surface of SS coupons were reduced by phage. These results suggest that bacteriophage AZO145A could be effective in reducing the viability of biofilm-adherent STEC O145 on stainless steel in food industry environments.


Asunto(s)
Bacteriófagos/fisiología , Contaminación de Equipos/prevención & control , Carne/microbiología , Escherichia coli Shiga-Toxigénica/virología , Acero Inoxidable/análisis , Animales , Biopelículas , Bovinos , Manipulación de Alimentos/instrumentación , Escherichia coli Shiga-Toxigénica/crecimiento & desarrollo , Escherichia coli Shiga-Toxigénica/fisiología
7.
Foodborne Pathog Dis ; 17(4): 235-242, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31809192

RESUMEN

Shiga toxin-producing Escherichia coli (STEC) are a leading cause of foodborne illnesses worldwide, with beef and beef products as a common food reservoir. STEC strains may be present in beef-processing environments in the form of biofilms. The exudate of raw beef, also referred to as beef juice, has been identified as an important source of bacterial contamination on food-processing surfaces. This study applied beef juice as a food-based model to study its effects on biofilm formation of six STEC isolates on stainless steel. Crystal violet staining and cell enumeration demonstrated that beef juice inhibited the biofilm formation of strains O113, O145, and O91 up to 24 h at 22°C, but that biofilm increased (p < 0.05) thereafter over 72 h. Biofilms formed by O157, O111, and O45 were not affected by the addition of beef juice over the whole incubation period. Electron microscopy showed that the morphology of biofilm cells was altered and more extracellular matrix was produced with beef juice than with M9 medium. The present study demonstrated that beef juice residues on stainless steel can enhance biofilm formation of some STEC strains. Thorough and frequent cleaning of meat residues and exudate during meat production and handling is critical to reduce STEC biofilm formation even at 13°C.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Contaminación de Alimentos/análisis , Productos de la Carne/microbiología , Escherichia coli Shiga-Toxigénica/fisiología , Acero Inoxidable/análisis , Animales , Bovinos , Manipulación de Alimentos , Microbiología de Alimentos
8.
Appl Environ Microbiol ; 84(5)2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29247054

RESUMEN

Purple prairie clover (PPC; Dalea purpurea Vent.) containing 84.5 g/kg dry matter (DM) of condensed tannin (CT) was ensiled without (control) or with polyethylene glycol (PEG) for 76 days, followed by 14 days of aerobic exposure. Changes in fermentation characteristics were determined, and the composition of bacterial and fungal communities were assessed using metagenomic sequencing. The addition of polyethylene glycol (PEG) that deactivated CT at ensiling increased (P < 0.05 to ∼0.001) soluble N, nonprotein N, lactic acid, total volatile fatty acids, ammonia N, deoxynivalenol (DON), and ochratoxin A (OTA) but decreased (P < 0.001) pH and water-soluble carbohydrates. The concentrations of DON and OTA increased (P < 0.001) for both silages, with the extent of increase being greater for control than for PEG-treated silage during aerobic exposure. The PEG-treated silage exhibited higher (P < 0.01 to ∼0.001) copy numbers of total bacteria, Lactobacillus, yeasts, and fungi than the control. The addition of PEG decreased (P < 0.01) bacterial diversity during both ensiling and aerobic exposure, whereas it increased (P < 0.05) fungal diversity during aerobic exposure. The addition of PEG at ensiling increased (P < 0.05) the abundances of Lactobacillus and Pediococcus species but decreased (P < 0.01) the abundances of Lactococcus and Leuconostoc species. Filamentous fungi were found in the microbiome at ensiling and after aerobic exposure, whereas Bacillus spp. were the dominate bacteria after aerobic exposure. In conclusion, CT decreased protein degradation and improved the aerobic stability of silage. These desirable outcomes likely reflect the ability of PPC CT to inhibit those microorganisms involved in lowering silage quality and in the production of mycotoxins.IMPORTANCE The present study reports the effects of condensed tannins on the complex microbial communities involved in ensiling and aerobic exposure of purple prairie clover. This study documents the ability of condensed tannins to lower mycotoxin production and the associated microbiome. Taxonomic bacterial community profiles were dominated by Lactobacillales after fermentation, with a notable increase in Bacillus spp. as a result of aerobic exposure. It is interesting to observe that condensed tannins decreased bacterial diversity during both ensiling and aerobic exposure but increased fungal diversity during aerobic exposure only. The present study indicates that the effects of condensed tannins on microbial communities lead to reduced lactic acid and total volatile fatty acid production, proteolysis, and mycotoxin concentration in the terminal silage and improved aerobic stability. Condensed tannins could be used as an additive to control unfavorable microbial development and maybe enhanced feed safety.


Asunto(s)
Bacterias/metabolismo , Fermentación , Hongos/metabolismo , Micobioma/fisiología , Micotoxinas/metabolismo , Proantocianidinas/metabolismo , Aerobiosis , Ensilaje/análisis
9.
Foodborne Pathog Dis ; 13(6): 316-24, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27023165

RESUMEN

The objectives of this study were to characterize the phenotype and genotype of 36 non-O157 Shiga toxin-producing Escherichia coli (STEC) strains isolated from humans, ovines, or bovines, including the top 6 (O26, O45, O103, O111, O121, and O145) and three other serogroups implicated in serious illness (O91, O113, and O128). Biofilms were formed by all strains with intermediate to strong biofilm producers (n = 24) more common at 22°C than at 37°C (p < 0.001) and 48 and 72 h (p < 0.001) than 24 h of incubation time. Biofilm-forming potential differed by serogroup and origin with O113 and human strains exhibiting the highest potential (p < 0.001). Biofilm-associated genes, csgA/csgD/crl/fimH (100%), flu (94%), rpoS (92%), ehaA(α) (89%), and cah (72%), were most prevalent, while mlrA (22%) and ehaA(ß) (14%) were least prevalent, although there was no clear compliment of genes associated with strains exhibiting the greatest biofilm-forming capacity. Among 12 virulence genes screened, iha and ehxA were present in 92% of the strains. The occurrence of stx1 in the top 6 serogroups (8/12, 67%) did not differ (p = 0.8) from other serogroups (17/24, 71%), but stx2 was less likely (confidence interval [CI] = 0.14-1.12; p = 0.04) to be in the former (9/24, 38%) than the latter (9/12, 75%). Excluding serogroups, O91 and O121, at least one strain per serogroup was resistant to between three and six antimicrobials. Streptomycin (31%), sulfisoxazole (31%), and tetracycline (25%) resistance was most common and was 35-50% less likely (p < 0.05) in human than animal strains. All non-O157 STEC strains were able to form biofilms on an abiotic surface, with some exhibiting resistance to multiple antimicrobials. Potential as a reservoir of antimicrobial resistance genes may be another hazard of biofilms in food-processing plants. As a result, future strategies to control these pathogens may include measures to prevent biofilms.


Asunto(s)
Biopelículas , Escherichia coli Shiga-Toxigénica/fisiología , Animales , Antibacterianos/farmacología , Biopelículas/crecimiento & desarrollo , Canadá , Bovinos , Farmacorresistencia Bacteriana , Microbiología de Alimentos , Humanos , Fenotipo , Serogrupo , Ovinos , Escherichia coli Shiga-Toxigénica/clasificación , Escherichia coli Shiga-Toxigénica/efectos de los fármacos , Escherichia coli Shiga-Toxigénica/genética , Factores de Virulencia/genética
10.
BMC Microbiol ; 15: 175, 2015 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-26318735

RESUMEN

BACKGROUND: Mannheimia haemolytica is a commensal bacterium that resides in the upper respiratory tract of cattle that can play a role in bovine respiratory disease. Prophages are common in the M. haemolytica genome and contribute significantly to host diversity. The objective of this research was to undertake comparative genomic analysis of phages induced from strains of M. haemolytica serotype A1 (535A and 2256A), A2 (587A and 1127A) and A6 (1152A and 3927A). RESULTS: Overall, four P2-like (535AP1, 587AP1, 1127AP1 and 2256AP1; genomes: 34.9-35.7 kb; G+C content: 41.5-42.1 %; genes: 51-53 coding sequences, CDSs), four λ-like (535AP2, 587AP2, 1152AP2 and 3927AP1; genomes: 48.6-52.1 kb; 41.1-41.4 % mol G+C; genes: 77-83 CDSs and 2 tRNAs) and one Mu-like (3927AP2; genome: 33.8 kb; 43.1 % mol G+C; encoding 50 CDSs) phages were identified. All P2-like phages are collinear with the temperate phage φMhaA1-PHL101 with 535AP1, 2256AP1 and 1152AP1 being most closely related, followed by 587AP1 and 1127AP1. Lambdoid phages are not collinear with any other known λ-type phages, with 587AP2 being distinct from 535AP2, 3927AP1 and 1152AP2. All λ-like phages contain genes encoding a toxin-antitoxin (TA) system and cell-associated haemolysin XhlA. The Mu-like phage induced from 3927A is closely related to the phage remnant φMhaMu2 from M. haemolytica PHL21, with similar Mu-like phages existing in the genomes of M. haemolytica 535A and 587A. CONCLUSIONS: This is among the first reports of both λ- and Mu-type phages being induced from M. haemolytica. Compared to phages induced from commensal strains of M. haemolytica serotype A2, those induced from the more virulent A1 and A6 serotypes are more closely related. Moreover, when P2-, λ- and Mu-like phages co-existed in the M. haemolytica genome, only P2- and λ-like phages were detected upon induction, suggesting that Mu-type phages may be more resistant to induction. Toxin-antitoxin gene cassettes in λ-like phages may contribute to their genomic persistence or the establishment of persister subpopulations of M. haemolytica. Further work is required to determine if the cell-associated haemolysin XhlA encoded by λ-like phages contributes to the pathogenicity and ecological fitness of M. haemolytica.


Asunto(s)
Mannheimia haemolytica/virología , Profagos/genética , Profagos/aislamiento & purificación , Activación Viral , Composición de Base , ADN Viral/química , ADN Viral/genética , Datos de Secuencia Molecular , Profagos/fisiología , Análisis de Secuencia de ADN , Homología de Secuencia , Sintenía
11.
Can J Microbiol ; 61(7): 467-75, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26011668

RESUMEN

This study aimed to isolate and characterize bacteriophages that lyse non-O157 Shiga toxin-producing Escherichia coli (STEC) from cattle feces. Of 37 non-O157 STEC-infecting phages isolated, those targeting O26 (AXO26A, AYO26A, AYO26B), O103 (AXO103A, AYO103A), O111 (AXO111A, AYO111A), O121 (AXO121A, AXO121B), and O145 (AYO145A, AYO145B) were further characterized. Transmission electron microscopy showed that the 11 isolates belonged to 3 families and 6 genera: the families Myoviridae (types rV5, T4, ViI, O1), Siphoviridae (type T5), and Podoviridae (type T7). Genome size of the phages as determined by pulsed-field gel electrophoresis ranged from 38 to 177 kb. Excluding phages AXO26A, AYO103A, AYO145A, and AYO145B, all other phages were capable of lysing more than 1 clinically important strain from serogroups of O26, O91, O103, O111, O113, O121, and O128, but none exhibited infectivity across all serogroups. Moreover, phages AYO26A, AXO121A, and AXO121B were also able to lyse 4 common phage types of STEC O157:H7. Our findings show that a diversity of non-O157 STEC-infecting phages are harbored in bovine feces. Phages AYO26A, AYO26B, AXO103A, AXO111A, AYO111A, AXO121A, and AXO121B exhibited a broad host range against a number of serogroups of STEC and have potential for the biocontrol of STEC in the environment.


Asunto(s)
Bacteriófagos/aislamiento & purificación , Bacteriófagos/fisiología , Biodiversidad , Heces/microbiología , Heces/virología , Myoviridae/fisiología , Escherichia coli Shiga-Toxigénica/virología , Siphoviridae/fisiología , Animales , Bacteriófagos/clasificación , Bacteriófagos/genética , Bovinos , Electroforesis en Gel de Campo Pulsado , Especificidad del Huésped , Myoviridae/clasificación , Myoviridae/genética , Myoviridae/aislamiento & purificación , Escherichia coli Shiga-Toxigénica/genética , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Siphoviridae/clasificación , Siphoviridae/genética , Siphoviridae/aislamiento & purificación
12.
Front Microbiol ; 14: 1192763, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37808284

RESUMEN

Background: Bovine respiratory disease (BRD) is a significant health problem in beef cattle production, resulting in considerable economic losses due to mortalities, cost of treatment, and reduced feed efficiency. The onset of BRD is multifactorial, with numerous stressors being implicated, including transportation from farms to feedlots. In relation to animal welfare, regulations or practices may require mandatory rest times during transportation. Despite this, there is limited information on how transportation and rest stops affect the respiratory microbiota. Results: This study evaluated the effect of cattle source (ranch-direct or auction market-derived) and rest stop duration (0 or 8 h of rest) on the upper respiratory tract microbiota and its relationship to stress response indicators (blood cortisol and haptoglobin) of recently weaned cattle transported for 36 h. The community structure of bacteria was altered by feedlot placement. When cattle were off-loaded for a rest, several key bacterial genera associated with BRD (Mannheimia, Histophilus, Pasteurella) were increased for most sampling times after feedlot placement for the ranch-direct cattle group, compared to animals given no rest stop. Similarly, more sampling time points had elevated levels of BRD-associated genera when auction market cattle were compared to ranch-direct. When evaluated across time and treatments several genera including Mannheimia, Moraxella, Streptococcus and Corynebacterium were positively correlated with blood cortisol concentrations. Conclusion: This is the first study to assess the effect of rest during transportation and cattle source on the respiratory microbiota in weaned beef calves. The results suggest that rest stops and auction market placement may be risk factors for BRD, based solely on increased abundance of BRD-associated genera in the upper respiratory tract. However, it was not possible to link these microbiota to disease outcome, due to low incidence of BRD in the study populations. Larger scale studies are needed to further define how transportation variables impact cattle health.

13.
Viruses ; 15(10)2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37896873

RESUMEN

Avian pathogenic Escherichia coli (APEC), such as O1, O2 and O78, are important serogroups relating to chicken health, being responsible for colibacillosis. In this study, we isolated and characterized bacteriophages (phages) from hen feces and human sewage in Alberta with the potential for controlling colibacillosis in laying hens. The lytic profile, host range, pH tolerance and morphology of seven APEC-infecting phages (ASO1A, ASO1B, ASO2A, ASO78A, ASO2B, AVIO78A and ASO78B) were assessed using a microplate phage virulence assay and transmission electron microscopy (TEM). The potential safety of phages at the genome level was predicted using AMRFinderPlus and the Virulence Factor Database. Finally, phage genera and genetic relatedness with other known phages from the NCBI GenBank database were inferred using the virus intergenomic distance calculator and single gene-based phylogenetic trees. The seven APEC-infecting phages preferentially lysed APEC strains in this study, with ECL21443 (O2) being the most susceptible to phages (n = 5). ASO78A had the broadest host range, lysing all tested strains (n = 5) except ECL20885 (O1). Phages were viable at a pH of 2.5 or 3.5-9.0 after 4 h of incubation. Based on TEM, phages were classed as myovirus, siphovirus and podovirus. No genes associated with virulence, antimicrobial resistance or lysogeny were detected in phage genomes. Comparative genomic analysis placed six of the seven phages in five genera: Felixounavirus (ASO1A and ASO1B), Phapecoctavirus (ASO2A), Tequatrovirus (ASO78A), Kayfunavirus (ASO2B) and Sashavirus (AVIO78A). Based on the nucleotide intergenomic similarity (<70%), phage ASO78B was not assigned a genus in the siphovirus and could represent a new genus in class Caudoviricetes. The tail fiber protein phylogeny revealed variations within APEC-infecting phages and closely related phages. Diverse APEC-infecting phages harbored in the environment demonstrate the potential to control colibacillosis in poultry.


Asunto(s)
Bacteriófagos , Infecciones por Escherichia coli , Enfermedades de las Aves de Corral , Animales , Femenino , Humanos , Escherichia coli/genética , Bacteriófagos/genética , Pollos , Filogenia , Infecciones por Escherichia coli/veterinaria , Colifagos/genética
14.
Can J Microbiol ; 58(7): 923-7, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22691120

RESUMEN

Bacteriophages are associated with reduced fecal shedding of Shiga-toxin-producing Escherichia coli O157:H7 (STEC O157:H7) in cattle. Four phages exhibiting activity against 12 of 14 STEC O157:H7 strains, representing 11 common phage types, were isolated. Phages did not lyse non-O157 E. coli, with 11 of the 12 STEC strains exhibiting extreme susceptibility (average multiplicity of infection (MOI) = 0.0003-0.0007). All phages had icosahedral heads with tapered, noncontractile tails, a morphology indicative of T1-like Siphoviridae. Genome size of all phages was ∼44 kb, but EcoRІ or HindIII digestion profiles differed among phages. Based on restriction enzyme digestion profiles, phages AHP24, AHS24, and AHP42 were more related (66.7%-82.4%) to each other than to AKS96, while AHP24 and AHS24, isolated from the same feedlot pen, exhibited the highest identity (88.9%-92.3%). Phages AHP24 and AHS24 exhibited the broadest host range and strongest lytic activity against STEC O157:H7, making them strong candidates for biocontrol of this bacterium in cattle.


Asunto(s)
Bacteriófagos/clasificación , Bacteriófagos/genética , Escherichia coli O157/virología , Animales , Bacteriófagos/aislamiento & purificación , Bacteriófagos/ultraestructura , Bovinos , Enzimas de Restricción del ADN/metabolismo , Heces/microbiología , Heces/virología , Genoma Viral/genética , Especificidad del Huésped , Filogenia , Mapeo Restrictivo
15.
Phage (New Rochelle) ; 3(4): 221-230, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36793886

RESUMEN

Background: Non-O157 Shiga toxigenic Escherichia coli (STEC) are one of the most important food and waterborne pathogens worldwide. Although bacteriophages (phages) have been used for the biocontrol of these pathogens, a comprehensive understanding of the genetic characteristics and lifestyle of potentially effective candidate phages is lacking. Materials and Methods: In this study, 10 non-O157-infecting phages previously isolated from feedlot cattle and dairy farms in the North-West province of South Africa were sequenced, and their genomes were analyzed. Results: Comparative genomics and proteomics revealed that the phages were closely related to other E. coli-infecting Tunaviruses, Seuratviruses, Carltongylesviruses, Tequatroviruses, and Mosigviruses from the National Center for Biotechnology Information GenBank database. Phages lacked integrases associated with a lysogenic cycle and genes associated with antibiotic resistance and Shiga toxins. Conclusions: Comparative genomic analysis identified a diversity of unique non-O157-infecting phages, which could be used to mitigate the abundance of various non-O157 STEC serogroups without safety concerns.

16.
Front Microbiol ; 13: 943279, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36312979

RESUMEN

Bovine mastitis caused by multi-drug resistant (MDR) Klebsiella pneumoniae is difficult to treat with antibiotics, whereas bacteriophages may be a viable alternative. Our objective was to use 2 K. pneumoniae strains, 1 MDR and the other non-MDR, to isolate phages from sewage samples and compare their biological and genomic characteristics. Additionally, phage infected mouse mammary gland was also analyzed by H&E staining and ELISA kits to compare morphology and inflammatory factors, respectively. Based on assessments with double agar plates and transmission electron microscopy, phage CM_Kpn_HB132952 had clear plaques surrounded by translucent halos on the bacterial lawn of K. pneumoniae KPHB132952 and belonged to Siphoviridae, whereas phage CM_Kpn_HB143742 formed a clear plaque on the bacterial lawn of K. pneumoniae KPHB143742 and belonged to Podoviridae. In 1-step growth curves, CM_Kpn_HB132952 and CM_Kpn_HB143742 had burst sizes of 0.34 and 0.73 log10 PFU/mL, respectively. The former had a latent period of 50 min and an optimal multiplicity of infection (MOI) of 0.01, whereas for the latter, the latent period was 30 min (MOI = 1). Phage CM_Kpn_HB132952 had better thermal and acid-base stability than phage CM_Kpn_HB143742. Additionally, both phages had the same host range rate but different host ranges. Based on Illumina NovaSeq, phages CM_Kpn_HB132952 and CM_Kpn_HB143742 had 140 and 145 predicted genes, respectively. Genomic sequencing and phylogenetic tree analysis indicated that both phages were novel phages belonging to the Klebsiella family. Additionally, the histopathological structure and inflammatory factors TNF-α and IL-1ß were not significantly different among phage groups and the control group. In conclusion, using 1 MDR and 1 non-MDR strain of K. pneumoniae, we successfully isolated two phages from the same sewage sample, and demonstrated that they had distinct biological and genomic characteristics.

17.
J Vis Exp ; (174)2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34487111

RESUMEN

Bacterial pathogens continually challenge food safety systems worldwide. With increasing concerns about the emergence of heat- and sanitizer-resistant bacteria, novel antibacterial agents, are urgently needed. A bacteriophage-based biocontrol strategy is the therapeutic use of phages to control bacterial pathogens in agricultural settings. Phage biocontrol is increasingly accepted as a sustainable technology, effective at decontaminating foodborne pathogens. To ensure effective biocontrol outcomes, systematic screening of phage combinations against targeted bacteria under required environmental conditions is crucial. Antibacterial efficacy of phage cocktails may be affected by phage genera and combination, targeted bacterial strains, the multiplicity of infection, temperature, and time. To formulate a phage cocktail with superior efficacy, the proposed method was to systematically evaluate the effectiveness of individual phages and phage cocktails in killing foodborne bacterial pathogens under targeted conditions. Bacterial killing efficacy was monitored by measuring optical density at desired temperatures and durations. Superior phage efficacy was determined by complete inhibition of bacterial growth. The proposed method is a robust, evidence-based approach to facilitate formulating phage cocktails with superior antibacterial efficacy.


Asunto(s)
Bacteriófagos , Antibacterianos/farmacología , Bacterias
18.
Microorganisms ; 9(12)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34946112

RESUMEN

Shiga toxin-producing Escherichia coli (STEC) and Salmonella enterica are important foodborne pathogens capable of forming both single- and multi-species biofilms. In this study, the mono- and dual-species biofilms were formed by STEC O113:H21 and Salmonella enterica serovar Choleraesuis 10708 on stainless steel in the presence of beef juice over 5 d at 22 °C. The dual-species biofilm mass was substantially (p < 0.05) greater than that produced by STEC O113:H21 or S. Choleraesuis 10708 alone. However, numbers (CFU/mL) of S. Choleraesuis 10708 or STEC O113:H21 cells in the dual-species biofilm were (p < 0.05) lower than their respective counts in single-species biofilms. In multi-species biofilms, the sensitivity of S. Choleraesuis 10708 to the antimicrobial peptide WK2 was reduced, but it was increased for STEC O113:H21. Visualization of the temporal and spatial development of dual-species biofilms using florescent protein labeling confirmed that WK2 reduced cell numbers within biofilms. Collectively, our results highlight the potential risk of cross-contamination by multi-species biofilms to food safety and suggest that WK2 may be developed as a novel antimicrobial or sanitizer for the control of biofilms on stainless steel.

19.
Animals (Basel) ; 11(3)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807953

RESUMEN

Grazing Swan geese (Anser cygnoides) have good meat quality but grow slowly. This study aimed to study whether supplemental feeding could improve growth performance of grazing Swan geese and investigate a suitable dietary metabolizable energy (ME) level of supplemental diet for grazing Swan geese. Naturalized healthy male Swan geese (n = 144; 42 ± 2.0 days and 1.21 ± 0.17 kg) were randomly allocated into 4 groups and grazed on pasture alone (control, CON) or offered supplemental diets with ME of 9.5, 11.5, or 13.5 MJ/kg of DM after grazing. Growth performance and body-size measurements (including bone development) were lower (p < 0.05) in CON versus supplemented geese, as well as slaughter measurements on days 28 and 56. The DM intake linearly decreased (p < 0.01) with increasing dietary ME from day 29 to 56. Slaughter, semi-eviscerated, eviscerated, and thigh muscle yield linearly (p < 0.01) decreased with increasing dietary ME on day 56. Lightness (L*) and yellowness (b*) for breast and thigh muscle on days 28 and 56, and breast muscle shear force on day 56, were lower (p < 0.01) in supplemented versus CON geese. In conclusion, supplemental feeding improved growth performance and carcass characteristics of grazing Swan geese, and supplemental feed with ME of 9.5 MJ/kg of DM could be offered to improve growth and meat quality of grazing Swan geese.

20.
Front Microbiol ; 12: 616712, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33717006

RESUMEN

Effectiveness of bacteriophages AKFV33 (Tequintavirus, T5) and AHP24 (Rogunavirus, T1), wV7 (Tequatrovirus, T4), and AHP24S (Vequintavirus, rV5), as well as 11 cocktails of combinations of the four phages, were evaluated in vitro for biocontrol of six common phage types of Escherichia coli O157 (human and bovine origins) at different multiplicities of infection (MOIs; 0.01-1,000), temperatures (37 or 22°C), and exposure times (10-22 h). Phage efficacy against O157 was highest at MOI 1,000 (P < 0.001) and after 14-18 h of exposure at 22°C (P < 0.001). The activity of individual phages against O157 did not predict the activity of a cocktail of these phages even at the same temperature and MOI. Combinations of phages were neutral (no better or worse than the most effective constituent phages acting alone), displayed facilitation (greater efficacy than the most effective constituent phages acting alone), or antagonistic (lower efficacy than the most effective constituent phages acting alone). Across MOIs, temperatures, exposure time, and O157 strains, a cocktail of T1, T4, and rV5 was most effective (P < 0.05) against O157, although T1 and rV5 were less effective (P < 0.001) than other individual phages. T5 was the most effective individual phages (P < 0.05), but was antagonistic to other phages, particularly rV5 and T4 + rV5. Interactions among phages were influenced by phage genera and phage combination, O157 strains, MOIs, incubation temperatures, and times. Based on this study, future development of phage cocktails should, as a minimum, include confirmation of a lack of antagonism among constituent phages and preferably confirmation of facilitation or synergistic effects.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda