Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
FASEB J ; 35(4): e21348, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33715218

RESUMEN

The gut microbiota contributes to shaping efficient and safe immune defenses in the gut. However, little is known about the role of the gut and/or lung microbiota in the education of pulmonary innate immune responses. Here, we tested whether the endogenous microbiota in general can modulate the reactivity of pulmonary tissue to pathogen stimuli by comparing the response of specific-pathogen-free (SPF) and germ-free (GF) mice. Thus, we observed earlier and greater inflammation in the pulmonary compartment of GF mice than that of SPF mice after intranasal instillation to lipopolysaccharide (LPS), a component of Gram-negative bacteria. Toll-like receptor 4 (TLR4) was more abundantly expressed in the lungs of GF mice than those of SPF mice at steady state, which could predispose the innate immunity of GF mice to strongly react to the environmental stimuli. Lung explants were stimulated with different TLR agonists or infected with the human airways pathogen, respiratory syncytial virus (RSV), resulting in greater inflammation under almost all conditions for the GF explants. Finally, alveolar macrophages (AM) from GF mice presented a higher innate immune response upon RSV infection than those of SPF mice. Overall, these data suggest that the presence of microbiota in SPF mice induced a process of innate immune tolerance in the lungs by a mechanism which remains to be elucidated. Our study represents a step forward to establishing the link between the microbiota and the immune reactivity of the lungs.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Vida Libre de Gérmenes , Lipopolisacáridos/toxicidad , Pulmón/inmunología , Pulmón/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/citología , Citocinas/genética , Citocinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/inducido químicamente , Inflamación/metabolismo , Enfermedades Pulmonares/inducido químicamente , Masculino , Ratones , Organismos Libres de Patógenos Específicos , Técnicas de Cultivo de Tejidos , Receptor Toll-Like 4/genética
2.
J Nanobiotechnology ; 16(1): 53, 2018 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-29921300

RESUMEN

BACKGROUND: Titanium dioxide (TiO2) particles are commonly used as a food additive (E171 in the EU) for its whitening and opacifying properties. However, the risk of gut barrier disruption is an increasing concern because of the presence of a nano-sized fraction. Food-grade E171 may interact with mucus, a gut barrier protagonist still poorly explored in food nanotoxicology. To test this hypothesis, a comprehensive approach was performed to evaluate in vitro and in vivo interactions between TiO2 and intestinal mucus, by comparing food-grade E171 with NM-105 (Aeroxyde P25) OECD reference nanomaterial. RESULTS: We tested E171-trapping properties of mucus in vitro using HT29-MTX intestinal epithelial cells. Time-lapse confocal laser scanning microscopy was performed without labeling to avoid modification of the particle surface. Near-UV irradiation of E171 TiO2 particles at 364 nm resulted in fluorescence emission in the visible range, with a maximum at 510 nm. The penetration of E171 TiO2 into the mucoid area of HT29-MTX cells was visualized in situ. One hour after exposure, TiO2 particles accumulated inside "patchy" regions 20 µm above the substratum. The structure of mucus produced by HT29-MTX cells was characterized by MUC5AC immunofluorescence staining. The mucus layer was thin and organized into regular "islands" located approximately 20 µm above the substratum. The region-specific trapping of food-grade TiO2 particles was attributed to this mucus patchy structure. We compared TiO2-mediated effects in vivo in rats after acute or sub-chronic oral daily administration of food-grade E171 and NM-105 at relevant exposure levels for humans. Cecal short-chain fatty acid profiles and gut mucin O-glycosylation patterns remained unchanged, irrespective of treatment. CONCLUSIONS: Food-grade TiO2 is trapped by intestinal mucus in vitro but does not affect mucin O-glycosylation and short-chain fatty acid synthesis in vivo, suggesting the absence of a mucus barrier impairment under "healthy gut" conditions.


Asunto(s)
Ácidos Grasos Volátiles/biosíntesis , Aditivos Alimentarios/química , Mucosa Intestinal/metabolismo , Mucinas/metabolismo , Moco/metabolismo , Nanopartículas/química , Titanio/química , Animales , Ciego/efectos de los fármacos , Ciego/metabolismo , Aditivos Alimentarios/toxicidad , Glicosilación , Células HT29 , Humanos , Absorción Intestinal , Masculino , Nanopartículas/toxicidad , Tamaño de la Partícula , Ratas Wistar , Propiedades de Superficie , Distribución Tisular , Titanio/toxicidad
3.
J Hepatol ; 66(4): 806-815, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27890791

RESUMEN

BACKGROUND & AIMS: Alcoholic liver disease (ALD) is a leading cause of liver failure and mortality. In humans, severe alcoholic hepatitis is associated with key changes to intestinal microbiota (IM), which influences individual sensitivity to develop advanced ALD. We used the different susceptibility to ALD observed in two distinct animal facilities to test the efficiency of two complementary strategies (fecal microbiota transplantation and prebiotic treatment) to reverse dysbiosis and prevent ALD. METHODS: Mice were fed alcohol in two distinct animal facilities with a Lieber DeCarli diet. Fecal microbiota transplantation was performed with fresh feces from alcohol-resistant donor mice to alcohol-sensitive receiver mice three times a week. Another group of mice received pectin during the entire alcohol consumption period. RESULTS: Ethanol induced steatosis and liver inflammation, which were associated with disruption of gut homeostasis, in alcohol-sensitive, but not alcohol resistant mice. IM analysis showed that the proportion of Bacteroides was specifically lower in alcohol-sensitive mice (p<0.05). Principal coordinate analysis showed that the IM of sensitive and resistant mice clustered differently. We targeted IM using two different strategies to prevent alcohol-induced liver lesions: (1) pectin treatment which induced major modifications of the IM, (2) fecal microbiota transplantation which resulted in an IM very close to that of resistant donor mice in the sensitive recipient mice. Both methods prevented steatosis, liver inflammation, and restored gut homeostasis. CONCLUSIONS: Manipulation of IM can prevent alcohol-induced liver injury. The IM should be considered as a new therapeutic target in ALD. LAY SUMMARY: Sensitivity to alcoholic liver disease (ALD) is driven by intestinal microbiota in alcohol fed mice. Treatment of mice with alcohol-induced liver lesions by fecal transplant from alcohol fed mice resistant to ALD or with prebiotic (pectin) prevents ALD. These findings open new possibilities for treatment of human ALD through intestinal microbiota manipulation.


Asunto(s)
Disbiosis/microbiología , Disbiosis/prevención & control , Microbioma Gastrointestinal/fisiología , Hepatopatías Alcohólicas/microbiología , Hepatopatías Alcohólicas/prevención & control , Animales , Bacteroides/genética , Bacteroides/aislamiento & purificación , Bacteroides/fisiología , Ácidos y Sales Biliares/metabolismo , Fibras de la Dieta/administración & dosificación , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades/microbiología , Trasplante de Microbiota Fecal , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Pectinas/administración & dosificación , Prebióticos/administración & dosificación
4.
FASEB J ; 30(1): 252-61, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26370847

RESUMEN

The amount of iron in the diet directly influences the composition of the microbiota. Inversely, the effects of the microbiota on iron homeostasis have been little studied. So, we investigate whether the microbiota itself may alter host iron sensing. Duodenal cytochrome b and divalent metal transporter 1, involved in apical iron uptake, are 8- and 10-fold, respectively, more abundant in the duodenum of germ-free (GF) mice than in mice colonized with a microbiota. In contrast, the luminal exporter ferroportin is 2-fold less abundant in GF. The overall signature of microbiota on iron-related proteins is similar in the colon. The colonization does not modify systemic parameters as plasma transferrin saturation (20%), plasma ferritin (150 ng/L), and liver (85 µg/g) iron load. Commensal organisms (Bacteroides thetaiotaomicron VPI-5482 and Faecalibacterium prausnitzii A2-165) and a probiotic strain (Streptococcus thermophilus LMD-9) led to up to 12-fold induction of ferritin in colon. Our data suggest that the intestinal cells of GF mice are depleted of iron and that following colonization, the epithelial cells favor iron storage. This study is the first to demonstrate that gut microbes induce a specific iron-related protein signature, highlighting new aspects of the crosstalk between the microbiota and the intestinal epithelium.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Mucosa Intestinal/metabolismo , Hierro/metabolismo , Microbiota , Animales , Proteínas de Transporte de Catión/genética , Colon/metabolismo , Colon/microbiología , Citocromos b/genética , Citocromos b/metabolismo , Duodeno/metabolismo , Duodeno/microbiología , Ferritinas/sangre , Mucosa Intestinal/microbiología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
5.
FASEB J ; 27(2): 645-55, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23118025

RESUMEN

Interaction between the gut microbiota and the host starts immediately after birth with the progressive colonization of the sterile intestine. Our aim was to investigate the interactions taking place in the colonic epithelium after the first exposure to gut microbiota. Germ-free (GF) rats were inoculated with two different microbiotas: the first, obtained from suckling rats, was rich in primocolonizing bacteria and the second, obtained from adult rats, was representative of a mature microbiota. Once transferred into GF rats, these two microbiotas evolved such that they converged, and recapitulated the primocolonization pattern, mimicking the chronological scheme of implantation following birth. The two microbiotas induced common responses in the colonic epithelium: a transitory proliferative phase followed by a compensatory phase characterized by increases in the abundance of p21(Cip1) and p27(Kip1) and in the number of goblet cells. The effects of the two microbiotas diverged only through their effects on colonic transporters. Analyses of solute carriers and aquaporins revealed that functional maturation was more pronounced following exposure to adult microbiota than suckling microbiota. The colon matured in parallel with the evolution of the microbiota composition, and we therefore suggest a link between intestinal events regulating homeostasis of the colon and modulation of microbial composition.


Asunto(s)
Colon/crecimiento & desarrollo , Colon/microbiología , Metagenoma , Animales , Diferenciación Celular , Proliferación Celular , Colon/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Genes Bacterianos , Vida Libre de Gérmenes , Mucosa Intestinal/crecimiento & desarrollo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Masculino , Metagenoma/genética , Ratas , Ratas Endogámicas F344 , Factores de Tiempo
6.
BMC Biol ; 11: 61, 2013 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-23692866

RESUMEN

BACKGROUND: The intestinal mucus layer plays a key role in the maintenance of host-microbiota homeostasis. To document the crosstalk between the host and microbiota, we used gnotobiotic models to study the influence of two major commensal bacteria, Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii, on this intestinal mucus layer. B. thetaiotaomicron is known to use polysaccharides from mucus, but its effect on goblet cells has not been addressed so far. F. prausnitzii is of particular physiological importance because it can be considered as a sensor and a marker of human health. We determined whether B. thetaiotaomicron affected goblet cell differentiation, mucin synthesis and glycosylation in the colonic epithelium. We then investigated how F. prausnitzii influenced the colonic epithelial responses to B. thetaiotaomicron. RESULTS: B. thetaiotaomicron, an acetate producer, increased goblet cell differentiation, expression of mucus-related genes and the ratio of sialylated to sulfated mucins in mono-associated rats. B. thetaiotaomicron, therefore, stimulates the secretory lineage, favoring mucus production. When B. thetaiotaomicron was associated with F. prausnitzii, an acetate consumer and a butyrate producer, the effects on goblet cells and mucin glycosylation were diminished. F. prausnitzii, by attenuating the effects of B. thetaiotaomicron on mucus, may help the epithelium to maintain appropriate proportions of different cell types of the secretory lineage. Using a mucus-producing cell line, we showed that acetate up-regulated KLF4, a transcription factor involved in goblet cell differentiation. CONCLUSIONS: B. thetaiotaomicron and F. prausnitzii, which are metabolically complementary, modulate, in vivo, the intestinal mucus barrier by modifying goblet cells and mucin glycosylation. Our study reveals the importance of the balance between two main commensal bacteria in maintaining colonic epithelial homeostasis via their respective effects on mucus.


Asunto(s)
Bacteroides/fisiología , Colon/microbiología , Células Caliciformes/microbiología , Mucosa Intestinal/microbiología , Moco/metabolismo , Polisacáridos/biosíntesis , Ruminococcus/fisiología , Acetatos/metabolismo , Animales , Bacteroides/ultraestructura , Infecciones por Bacteroides/microbiología , Infecciones por Bacteroides/patología , Diferenciación Celular , Colon/metabolismo , Colon/patología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Vida Libre de Gérmenes , Glicosilación , Células Caliciformes/metabolismo , Células Caliciformes/patología , Infecciones por Bacterias Grampositivas/microbiología , Infecciones por Bacterias Grampositivas/patología , Células HT29 , Interacciones Huésped-Patógeno/genética , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Factor 4 Similar a Kruppel , Moco/microbiología , Ratas , Transducción de Señal , Factores de Tiempo
7.
Gut Microbes ; 16(1): 2361660, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38935764

RESUMEN

The microbiota significantly impacts digestive epithelium functionality, especially in nutrient processing. Given the importance of iron for both the host and the microbiota, we hypothesized that host-microbiota interactions fluctuate with dietary iron levels. We compared germ-free (GF) and conventional mice (SPF) fed iron-containing (65 mg/Kg) or iron-depleted (<6 mg/Kg) diets. The efficacy of iron privation was validated by iron blood parameters. Ferritin and Dmt1, which represent cellular iron storage and transport respectively, were studied in tissues where they are abundant: the duodenum, liver and lung. When the mice were fed an iron-rich diet, the microbiota increased blood hemoglobin and hepcidin and the intestinal ferritin levels, suggesting that the microbiota helps iron storage. When iron was limiting, the microbiota inhibited the expression of the intestinal Dmt1 transporter, likely via the pathway triggered by Hif-2α. The microbiota assists the host in storing intestinal iron when it is abundant and competes with the host by inhibiting Dmt1 in conditions of iron scarcity. Comparison between duodenum, liver and lung indicates organ-specific responses to microbiota and iron availability. Iron depletion induced temporal changes in microbiota composition and activity, reduced α-diversity of microbiota, and led to Lactobacillaceae becoming particularly more abundant after 60 days of privation. By inoculating GF mice with a simplified bacterial mixture, we show that the iron-depleted host favors the gut fitness of Bifidobacterium longum.


Asunto(s)
Proteínas de Transporte de Catión , Duodeno , Microbioma Gastrointestinal , Hepcidinas , Hierro de la Dieta , Hígado , Animales , Ratones , Microbioma Gastrointestinal/fisiología , Hierro de la Dieta/metabolismo , Hierro de la Dieta/administración & dosificación , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genética , Hígado/metabolismo , Hígado/microbiología , Duodeno/metabolismo , Duodeno/microbiología , Hepcidinas/metabolismo , Ferritinas/metabolismo , Vida Libre de Gérmenes , Interacciones Microbiota-Huesped , Pulmón/microbiología , Pulmón/metabolismo , Hierro/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Ratones Endogámicos C57BL , Hemoglobinas/metabolismo , Masculino
8.
J Biol Chem ; 286(12): 10288-96, 2011 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-21239485

RESUMEN

The thermophilic lactic acid bacterium Streptococcus thermophilus is widely and traditionally used in the dairy industry. Despite the vast level of consumption of S. thermophilus through yogurt or probiotic functional food, very few data are available about its physiology in the gastrointestinal tract (GIT). The objective of the present work was to explore both the metabolic activity and host response of S. thermophilus in vivo. Our study profiles the protein expression of S. thermophilus after its adaptation to the GIT of gnotobiotic rats and describes the impact of S. thermophilus colonization on the colonic epithelium. S. thermophilus colonized progressively the GIT of germ-free rats to reach a stable population in 30 days (10(8) cfu/g of feces). This progressive colonization suggested that S. thermophilus undergoes an adaptation process within GIT. Indeed, we showed that the main response of S. thermophilus in the rat's GIT was the massive induction of the glycolysis pathway, leading to formation of lactate in the cecum. At the level of the colonic epithelium, the abundance of monocarboxylic acid transporter mRNAs (SLC16A1 and SLC5A8) and a protein involved in the cell cycle arrest (p27(kip1)) increased in the presence of S. thermophilus compared with germ-free rats. Based on different mono-associated rats harboring two different strains of S. thermophilus (LMD-9 or LMG18311) or weak lactate-producing commensal bacteria (Bacteroides thetaiotaomicron and Ruminococcus gnavus), we propose that lactate could be a signal produced by S. thermophilus and modulating the colon epithelium.


Asunto(s)
Adaptación Biológica/fisiología , Proteínas Bacterianas/biosíntesis , Colon/microbiología , Regulación Bacteriana de la Expresión Génica/fisiología , Streptococcus thermophilus/metabolismo , Animales , Masculino , Ratas , Ratas Endogámicas F344 , Organismos Libres de Patógenos Específicos
9.
Front Nutr ; 9: 928798, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36034910

RESUMEN

The aim of this study was to identify a probiotic-based strategy for maintaining muscle anabolism in the elderly. In previous research, we found that individuals experiencing short bowel syndrome (SBS) after an intestinal resection displayed beneficial metabolic adjustments that were mediated by their gut microbes. Thus, these bacteria could potentially be used to elicit similar positive effects in elderly people, who often have low food intake and thus develop sarcopenia. Gut bacterial strains from an SBS patient were evaluated for their ability to (1) maintain Caenorhabditis elegans survival and muscle structure and (2) promote protein anabolism in a model of frail rodents (18-month-old rats on a food-restricted diet: 75% of ad libitum consumption). We screened a first set of bacteria in C. elegans and selected two Lacticaseibacillus casei strains (62 and 63) for further testing in the rat model. We had four experimental groups: control rats on an ad libitum diet (AL); non-supplemented rats on the food-restricted diet (R); and two sets of food-restricted rats that received a daily supplement of one of the strains (∼109 CFU; R+62 and R+63). We measured lean mass, protein metabolism, insulin resistance, cecal short-chain fatty acids (SCFAs), and SCFA receptor expression in the gut. Food restriction led to decreased muscle mass [-10% vs. AL (p < 0.05)]. Supplementation with strain 63 tempered this effect [-2% vs. AL (p > 0.1)]. The mechanism appeared to be the stimulation of the insulin-sensitive p-S6/S6 and p-eIF2α/eIF2α ratios, which were similar in the R+63 and AL groups (p > 0.1) but lower in the R group (p < 0.05). We hypothesize that greater SCFA receptor sensitivity in the R+63 group promoted gut-muscle cross talk [GPR41: +40% and GPR43: +47% vs. R (p < 0.05)]. Hence, strain 63 could be used in association with other nutritional strategies and exercise regimes to limit sarcopenia in frail elderly people.

11.
Cell Rep ; 30(9): 2934-2947.e6, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32130898

RESUMEN

Secondary bacterial infections often complicate viral respiratory infections. We hypothesize that perturbation of the gut microbiota during influenza A virus (IAV) infection might favor respiratory bacterial superinfection. Sublethal infection with influenza transiently alters the composition and fermentative activity of the gut microbiota in mice. These changes are attributed in part to reduced food consumption. Fecal transfer experiments demonstrate that the IAV-conditioned microbiota compromises lung defenses against pneumococcal infection. In mechanistic terms, reduced production of the predominant short-chain fatty acid (SCFA) acetate affects the bactericidal activity of alveolar macrophages. Following treatment with acetate, mice colonized with the IAV-conditioned microbiota display reduced bacterial loads. In the context of influenza infection, acetate supplementation reduces, in a free fatty acid receptor 2 (FFAR2)-dependent manner, local and systemic bacterial loads. This translates into reduced lung pathology and improved survival rates of double-infected mice. Lastly, pharmacological activation of the SCFA receptor FFAR2 during influenza reduces bacterial superinfection.


Asunto(s)
Disbiosis/microbiología , Ácidos Grasos Volátiles/biosíntesis , Tracto Gastrointestinal/microbiología , Gripe Humana/microbiología , Pulmón/microbiología , Infecciones Neumocócicas/complicaciones , Sobreinfección/complicaciones , Sobreinfección/microbiología , Acetatos/farmacología , Animales , Disbiosis/complicaciones , Disbiosis/virología , Conducta Alimentaria , Microbioma Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/efectos de los fármacos , Humanos , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/microbiología , Macrófagos Alveolares/patología , Ratones Endogámicos C57BL , Infecciones Neumocócicas/microbiología , Infecciones Neumocócicas/virología , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Infecciones del Sistema Respiratorio/microbiología
12.
Am J Physiol Gastrointest Liver Physiol ; 297(1): G116-23, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19389806

RESUMEN

In short bowel syndrome (SBS), although a remaining colon improves patient outcome, there is no direct evidence of a mucosal colonic adaptation in humans. This prospective study evaluates morphology, proliferation status, and transporter expression level in the epithelium of the remaining colon of adult patients compared with controls. The targeted transporters were Na+/H+ exchangers (NHE2 and 3) and oligopeptide transporter (PepT1). Twelve adult patients with a jejuno-colonic anastomosis were studied at least 2 yr after the last surgery and compared with 11 healthy controls. The depth of crypts and number of epithelial cells per crypt were quantified. The proliferating and apoptotic cell contents were evaluated by revealing Ki67, PCNA, and caspase-3. NHE2, NHE3, PepT1 mRNAs, and PepT1 protein were quantified by quantitative RT-PCR and Western blot, respectively. In patients with SBS compared with controls, 1) hyperphagia and severe malabsorption were documented, 2) crypt depth and number of cells per crypt were 35% and 22% higher, respectively (P < 0.005), whereas the proliferation and apoptotic levels per crypt were unchanged, and 3) NHE2 mRNA was unmodified; NHE3 mRNA was downregulated near the anastomosis and unmodified distally, and PepT1 mRNA and protein were unmodified. We concluded that, in hyperphagic patients with SBS with severe malabsorption, adaptive colonic changes include an increased absorptive surface with an unchanged proliferative/apoptotic ratio and well-preserved absorptive NHE2, NHE3, and PepT1 transporters. This is the first study showing a controlled nonpharmacological hyperplasia in the colon of patients with SBS.


Asunto(s)
Proliferación Celular , Colon/fisiopatología , Mucosa Intestinal/fisiopatología , Síndrome del Intestino Corto/fisiopatología , Intercambiadores de Sodio-Hidrógeno/metabolismo , Simportadores/metabolismo , Adaptación Fisiológica , Anciano , Apoptosis , Estudios de Casos y Controles , Colon/metabolismo , Colon/patología , Colon/cirugía , Femenino , Humanos , Hiperfagia/metabolismo , Hiperfagia/patología , Hiperfagia/fisiopatología , Hiperplasia , Absorción Intestinal , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Mucosa Intestinal/cirugía , Masculino , Persona de Mediana Edad , Estado Nutricional , Transportador de Péptidos 1 , Estudios Prospectivos , ARN Mensajero/metabolismo , Síndrome del Intestino Corto/metabolismo , Síndrome del Intestino Corto/patología , Intercambiador 3 de Sodio-Hidrógeno , Intercambiadores de Sodio-Hidrógeno/genética , Simportadores/genética , Factores de Tiempo
13.
Front Physiol ; 9: 980, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30087622

RESUMEN

Mucus is a major component of the intestinal barrier involved both in the protection of the host and the fitness of commensals of the gut. Streptococcus thermophilus is consumed world-wide in fermented dairy products and is also recognized as a probiotic, as its consumption is associated with improved lactose digestion. We determined the overall effect of S. thermophilus on the mucus by evaluating its ability to adhere, degrade, modify, or induce the production of mucus and/or mucins. Adhesion was analyzed in vitro using two types of mucins (from pig or human biopsies) and mucus-producing intestinal HT29-MTX cells. The induction of mucus was characterized in two different rodent models, in which S. thermophilus is the unique bacterial species in the digestive tract or transited as a sub-dominant bacterium through a complex microbiota. S. thermophilus LMD-9 and LMG18311 strains did not grow in sugars used to form mucins as the sole carbon source and displayed weak binding to mucus/mucins relative to the highly adhesive TIL448 Lactococcus lactis. The presence of S. thermophilus as the unique bacteria in the digestive tract of gnotobiotic rats led to accumulation of lactate and increased the number of Alcian-Blue positive goblet cells and the amount of the mucus-inducer KLF4 transcription factor. Lactate significantly increased KLF4 protein levels in HT29-MTX cells. Introduction of S. thermophilusvia transit as a sub-dominant bacterium (103 CFU/g feces) in a complex endogenous microbiota resulted in a slight increase in lactate levels in the digestive tract, no induction of overall mucus production, and moderate induction of sulfated mucin production. We thus show that although S. thermophilus is a poor mucus-adhesive bacterium, it can promote mucus pathway at least in part by producing lactate in the digestive tract.

14.
ISME J ; 11(5): 1061-1074, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28045458

RESUMEN

Asthma is a chronic, non-curable, multifactorial disease with increasing incidence in industrial countries. This study evaluates the direct contribution of lung microbial components in allergic asthma in mice. Germ-Free and Specific-Pathogen-Free mice display similar susceptibilities to House Dust Mice-induced allergic asthma, indicating that the absence of bacteria confers no protection or increased risk to aeroallergens. In early life, allergic asthma changes the pattern of lung microbiota, and lung bacteria reciprocally modulate aeroallergen responsiveness. Primo-colonizing cultivable strains were screened for their immunoregulatory properties following their isolation from neonatal lungs. Intranasal inoculation of lung bacteria influenced the outcome of allergic asthma development: the strain CNCM I 4970 exacerbated some asthma features whereas the pro-Th1 strain CNCM I 4969 had protective effects. Thus, we confirm that appropriate bacterial lung stimuli during early life are critical for susceptibility to allergic asthma in young adults.


Asunto(s)
Asma/microbiología , Fenómenos Fisiológicos Bacterianos , Pulmón/microbiología , Alérgenos , Animales , Bacterias/aislamiento & purificación , Susceptibilidad a Enfermedades , Polvo/inmunología , Ratones , Ratones Endogámicos C57BL
15.
PLoS One ; 8(4): e57711, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23577056

RESUMEN

Most bacterial strains, which have been studied so far for their probiotic functions, are extensively used by manufacturers in developed countries. In our work, we sought to study a mix (called BSL) comprising three strains belonging to Lactobacillus fermentum, L. paraplantarum and L. salivarius, that were isolated from a traditional African pearl millet based fermented slurry. Our objective was to study this BSL cocktail in gnotobiotic rats, to evaluate their survival and their behavior in the digestive tract conditions. After a single oral inoculation of germfree rats with BSL, the species established stably in the digestive tract with the following hierarchy of abundance: L. salivarius> L. plantarum> L. fermentum. BSL cocktail was metabolically active since it produced 50 mM lactate and it expressed genes involved in binding mechanism in the caecum. Furthermore, the global morphology of the colon epithelium was not disturbed by the BSL cocktail. BSL cocktail did not modify mucus content and host mucus-related genes (MUC1, MUC2, MUC3 or resistin-like molecule ß). The cocktail of lactobacilli enhanced the proliferating cell nuclear antigen (PCNA) at a level comparable to what was observed in conventional rats. PCNA was involved in proliferation and DNA repair, but the presence of the cocktail did not provoke proliferative events (with Ki67 as indicator), so we suppose BSL may help gut preservation. This work is the first step towards the selection of strains that are derived from traditional fermented food to formulate new probiotic mixture.


Asunto(s)
Fermentación , Manipulación de Alimentos , Vida Libre de Gérmenes , Lactobacillus/aislamiento & purificación , Lactobacillus/fisiología , Pennisetum/metabolismo , Animales , Ciclo Celular , Proliferación Celular , Colon/citología , Colon/microbiología , Regulación Bacteriana de la Expresión Génica , Mucosa Intestinal/citología , Mucosa Intestinal/microbiología , Ácido Láctico/biosíntesis , Lactobacillus/genética , Lactobacillus/metabolismo , Masculino , Viabilidad Microbiana , Mucinas/metabolismo , Ratas
16.
PLoS One ; 7(5): e38034, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22675431

RESUMEN

The analysis of collections of lactic acid bacteria (LAB) from traditional fermented plant foods in tropical countries may enable the detection of LAB with interesting properties. Binding capacity is often the main criterion used to investigate the probiotic characteristics of bacteria. In this study, we focused on a collection of 163 Lactobacillaceace comprising 156 bacteria isolated from traditional amylaceous fermented foods and seven strains taken from a collection and used as controls. The collection had a series of analyses to assess binding potential for the selection of new probiotic candidates. The presence/absence of 14 genes involved in binding to the gastrointestinal tract was assessed. This enabled the detection of all the housekeeping genes (ef-Tu, eno, gap, groEl and srtA) in the entire collection, of some of the other genes (apf, cnb, fpbA, mapA, mub) in 86% to 100% of LAB, and of the other genes (cbsA, gtf, msa, slpA) in 0% to 8% of LAB. Most of the bacteria isolated from traditional fermented foods exhibited a genetic profile favorable for their binding to the gastrointestinal tract. We selected 30 strains with different genetic profiles to test their binding ability to non-mucus (HT29) and mucus secreting (HT29-MTX) cell lines as well as their ability to degrade mucus. Assays on both lines revealed high variability in binding properties among the LAB, depending on the cell model used. Finally, we investigated if their binding ability was linked to tighter cross-talk between bacteria and eukaryotic cells by measuring the expression of bacterial genes and of the eukaryotic MUC2 gene. Results showed that wild LAB from tropical amylaceous fermented food had a much higher binding capacity than the two LAB currently known to be probiotics. However their adhesion was not linked to any particular genetic equipment.


Asunto(s)
Adhesión Bacteriana/genética , Lactobacillaceae/genética , Lactobacillaceae/metabolismo , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Células HT29 , Humanos , Mucosa Intestinal/microbiología , Mucina 2/genética , Mucina 2/metabolismo , Mucinas/genética , Mucinas/metabolismo
17.
PLoS One ; 6(12): e28789, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22216112

RESUMEN

Streptococcus thermophilus is the archetype of lactose-adapted bacterium and so far, its sugar metabolism has been mainly investigated in vitro. The objective of this work was to study the impact of lactose and lactose permease on S. thermophilus physiology in the gastrointestinal tract (GIT) of gnotobiotic rats. We used rats mono-associated with LMD-9 strain and receiving 4.5% lactose. This model allowed the analysis of colonization curves of LMD-9, its metabolic profile, its production of lactate and its interaction with the colon epithelium. Lactose induced a rapid and high level of S. thermophilus in the GIT, where its activity led to 49 mM of intra-luminal L-lactate that was related to the induction of mono-carboxylic transporter mRNAs (SLC16A1 and SLC5A8) and p27(Kip1) cell cycle arrest protein in epithelial cells. In the presence of a continuous lactose supply, S. thermophilus recruited proteins involved in glycolysis and induced the metabolism of alternative sugars as sucrose, galactose, and glycogen. Moreover, inactivation of the lactose transporter, LacS, delayed S. thermophilus colonization. Our results show i/that lactose constitutes a limiting factor for colonization of S. thermophilus, ii/that activation of enzymes involved in carbohydrate metabolism constitutes the metabolic signature of S. thermophilus in the GIT, iii/that the production of lactate settles the dialogue with colon epithelium. We propose a metabolic model of management of carbohydrate resources by S. thermophilus in the GIT. Our results are in accord with the rationale that nutritional allegation via consumption of yogurt alleviates the symptoms of lactose intolerance.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Tracto Gastrointestinal/microbiología , Vida Libre de Gérmenes , Streptococcus thermophilus/crecimiento & desarrollo , Animales , Tracto Gastrointestinal/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ratas , Streptococcus thermophilus/metabolismo
18.
Biochimie ; 92(7): 753-61, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20172013

RESUMEN

Short bowel syndrome (SBS) is observed in Humans after a large resection of gut. Since the remnant colon and its associated microbiota play a major role in the outcome of patients with SBS, we studied the overall qualitative and quantitative microbiota composition of SBS adult patients compared to controls. The population was composed of 11 SBS type II patients (with a jejuno-colonic anastomosis) and 8 controls without intestinal pathology. SBS patients had 38 +/- 30 cm remnant small bowel length and 66 +/- 19% of residual colon. The repartition of proteins, lipids, carbohydrates and fibres was expressed as % of total oral intake in patients and controls. The microbiota was profiled from stool and biopsy samples with temporal temperature gradient gel electrophoresis and quantitative PCR. We show here that microbiota of SBS patients is unbalanced with a high prevalence of Lactobacillus along with a sub-dominant presence and poor diversity of Clostridium leptum, Clostridium coccoides and Bacteroidetes. In addition, Lactobacillus mucosae was detected within the fecal and mucosa-associated microbiota of SBS patients, whereas it remained undetectable in controls. Thus, in SBS the microbial composition was deeply altered in fecal and mucosal samples, with a shift between dominant and sub-dominant microbial groups and the prevalence of L. mucosae.


Asunto(s)
Heces/microbiología , Mucosa Intestinal/microbiología , Metagenoma , Síndrome del Intestino Corto/microbiología , Adulto , Estudios de Casos y Controles , Clostridium/genética , Clostridium/aislamiento & purificación , Estudios de Cohortes , Humanos , Lactobacillus/genética , Lactobacillus/aislamiento & purificación , Persona de Mediana Edad , Estado Nutricional , Síndrome del Intestino Corto/patología , Síndrome del Intestino Corto/fisiopatología
19.
Carcinogenesis ; 27(10): 2090-5, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16679304

RESUMEN

Diallyl sulfide (DAS) and diallyl disulfide (DADS) are natural components that could account for the anticarcinogenic properties of garlic, at least in part, through the activation of xenobiotic detoxifying metabolism. The aim of this work was to describe the effect of DAS and DADS on xenobiotic-related gene expressions and to study molecular mechanisms relaying DAS effect. We describe the different effects of DAS and DADS on hepatic CYP2B1/2, CYP3A and epoxide hydrolase (EpH) mRNAs in rats, in terms of activation profile, doses and kinetics. The activation profile varied with the mode of chemical administration, i.e. gastric infusion or intraperitoneal (i.p.) injection. Using gastric infusion, DAS and DADS proved different efficiencies at enhancing the mRNA level of the three drug-metabolizing enzymes. After an i.p. administration, we observed a specific activation of CYP2B1/2 gene by DAS. The DAS-mediated CYP2B1/2 activation occurred at transcriptional level and through an okadaic acid-sensitive pathway. In rat livers, a short sequence (NR1) derived from the CYP2B1/2 promoter was stimulated by DAS and we observed a nuclear accumulation of a DNA-protein complex binding NR1. Because constitutively activated receptor (CAR) is a major transcription factor driving the xenobiotic-induced stimulation of CYP2B1/2 through NR1, the role of CAR as a preferential mediator of DAS effect is discussed.


Asunto(s)
Compuestos Alílicos/farmacología , Disulfuros/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Sulfuros/farmacología , Xenobióticos/metabolismo , Animales , Hidrocarburo de Aril Hidroxilasas/genética , Receptor de Androstano Constitutivo , Citocromo P-450 CYP2B1/genética , Citocromo P-450 CYP3A/genética , Activación Enzimática , Epóxido Hidrolasas/genética , Masculino , Fenobarbital/farmacología , Receptor X de Pregnano , Ratas , Ratas Wistar , Receptores Citoplasmáticos y Nucleares/fisiología , Receptores de Esteroides/fisiología , Esteroide Hidroxilasas/genética , Factores de Transcripción/fisiología
20.
Dig Dis Sci ; 51(2): 326-32, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16534676

RESUMEN

After massive intestinal resection, physiological compensatory events occur in the remnant small bowel and in the colon. The aim of our work was to study the propensity of the colon to evolve after a massive small bowel resection in rats. The resected group, where 80% of the small bowel length was removed, was compared with sham-operated rats (transected). During the 7 postoperative days, rats were fed orally or they received an elemental nutrition through a gastric catheter. PepT1 and NHE3 mRNAs encoding apical membrane transporters were not modified in the present experiment. However, two unexpected genes (I-FABP and UroR) were up-regulated in the colon following intestinal resection. These modifications occurred without an imbalance of cell cycle protein content and in a context of low short-chain fatty acid production.


Asunto(s)
Colon/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Intestino Delgado/cirugía , Receptores de Superficie Celular/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Simportadores/metabolismo , Animales , Ciego/metabolismo , Proteínas de Ciclo Celular/metabolismo , Colon/patología , Proteínas de Unión a Ácidos Grasos/genética , Ácidos Grasos Volátiles/metabolismo , Masculino , Transportador de Péptidos 1 , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Receptores de Superficie Celular/genética , Receptores del Activador de Plasminógeno Tipo Uroquinasa , Intercambiador 3 de Sodio-Hidrógeno , Intercambiadores de Sodio-Hidrógeno/genética , Simportadores/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda