Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Sports Sci ; : 1-15, 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39422258

RESUMEN

This narrative review assesses the effects of repeated sprint training (RST) in hypoxia (RSH) and blood flow restriction (BFR) methods on skeletal muscle adaptations and performance. Current literature suggests that RSH promotes metabolic modifications in muscle cells, especially driven by reactive oxygen species production, HIF-1α stabilization, and changes in metabolism. Training with BFR promotes metabolite accumulation in working muscles due to limited blood flow, however, cellular mechanisms affected by BFR during RST are less explored. Data highlight that RSH improves repeated sprint ability (RSA) in several sport disciplines (e.g. rugby, tennis, soccer, cross-country skiing). However, recent studies showed that addition of hypoxia or BFR during RST did not promote supplementary benefits on aerobic performance, force-velocity power profile, and V˙O2max. Nonetheless, gains in V˙O2max were observed during sprint interval training protocols when BFR was applied during recovery between sets. Finally, recent studies highlighted that RSH can improve RSA in a short period. Thus, RSH and sprint training with BFR may be useful for sports disciplines requiring high glycolytic demand and can promote gains in RSA in a short window. Further studies must be encouraged to better understand the biological consequences of adding such stimuli to exercise, especially BFR, on long-term adaptation.

2.
J Sports Sci ; 41(11): 1126-1135, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37722830

RESUMEN

This study compared the acute effects of three recovery methods: active recovery (AR), hot- and cold-water immersion (HWI and CWI, respectively), used between two training sessions in elite athletes. Twelve national-team skaters (7 males, 5 females) completed three trials according to a randomized cross-over study. Fifteen minutes after an exhaustive ice-skating training session, participants underwent 20 min of HWI (41.1 ± 0.5°C), 15 min of CWI (12.1 ± 0.7°C) or 15 min of active recovery (AR). After 1 h 30 min of the first exercise, they performed a repeated-sprint cycling session. Average power output was slightly but significantly higher for AR (767 ± 179 W) and HWI (766 ± 170 W) compared to CWI (738 ± 156 W) (p = 0.026, d = 0.18). No statistical difference was observed between the conditions for both lactatemia and rating of perceived exertion. Furthermore, no significant effect of recovery was observed on the fatigue index calculated from the repeated sprint cycling exercises (p > 0.05). Finally, a positive correlation was found between the average muscle temperature measured during the recoveries and the maximal power output obtained during cycling exercises. In conclusion, the use of CWI in between high-intensity training sessions could slightly impair the performance outcomes compared to AR and HWI. However, studies with larger samples are needed to confirm these results, especially in less trained athletes.


Asunto(s)
Frío , Inmersión , Masculino , Humanos , Ejercicio Físico/fisiología , Agua , Fatiga
4.
Physiol Rep ; 12(11): e16044, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38849292

RESUMEN

This crossover study evaluated DNA methylation changes in human salivary samples following single sprint interval training sessions performed in hypoxia, with blood flow restriction (BFR), or with gravity-induced BFR. Global DNA methylation levels were evaluated with an enzyme-linked immunosorbent assay. Methylation-sensitive restriction enzymes were used to determine the percentage methylation in a part of the promoter of the gene-inducible nitric oxide synthase (p-iNOS), as well as an enhancer (e-iNOS). Global methylation increased after exercise (p < 0.001; dz = 0.50). A tendency was observed for exercise × condition interaction (p = 0.070). Post hoc analyses revealed a significant increase in global methylation between pre- (7.2 ± 2.6%) and postexercise (10.7 ± 2.1%) with BFR (p = 0.025; dz = 0.69). Methylation of p-iNOS was unchanged (p > 0.05). Conversely, the methylation of e-iNOS increased from 0.6 ± 0.4% to 0.9 ± 0.8% after exercise (p = 0.025; dz = 0.41), independently of the condition (p > 0.05). Global methylation correlated with muscle oxygenation during exercise (r = 0.37, p = 0.042), while e-iNOS methylation showed an opposite association (r = -0.60, p = 0.025). Furthermore, p-iNOS methylation was linked to heart rate (r = 0.49, p = 0.028). Hence, a single sprint interval training increases global methylation in saliva, and adding BFR tends to increase it further. Lower muscle oxygenation is associated with augmented e-iNOS methylation. Finally, increased cardiovascular strain results in increased p-iNOS methylation.


Asunto(s)
Metilación de ADN , Entrenamiento de Intervalos de Alta Intensidad , Hipoxia , Flujo Sanguíneo Regional , Saliva , Humanos , Masculino , Hipoxia/metabolismo , Hipoxia/fisiopatología , Hipoxia/genética , Proyectos Piloto , Adulto , Entrenamiento de Intervalos de Alta Intensidad/métodos , Saliva/metabolismo , Estudios Cruzados , Ejercicio Físico/fisiología , Adulto Joven
5.
Artículo en Inglés | MEDLINE | ID: mdl-35564375

RESUMEN

Based on comparisons to moderate continuous exercise (MICT), high-intensity interval training (HIIT) is becoming a worldwide trend in physical exercise. This raises methodological questions related to equalization of exercise dose when comparing protocols. The present scoping review aims to identify in the literature the evidence for protocol equalization and the soundness of methods used for it. PubMed and Scopus databases were searched for original investigations comparing the effects of HIIT to MICT. A total of 2041 articles were identified, and 169 were included. Of these, 98 articles equalized protocols by utilizing energy-based methods or exercise volume (58 and 31 articles, respectively). No clear consensus for protocol equalization appears to have evolved over recent years. Prominent equalization methods consider the exercise dose (i.e., energy expenditure/production or total volume) in absolute values without considering the nonlinear nature of its relationship with duration. Exercises resulting from these methods induced maximal exertion in HIIT but low exertion in MICT. A key question is, therefore, whether exercise doses are best considered in absolute terms or relative to individual exercise maximums. If protocol equalization is accepted as an essential methodological prerequisite, it is hypothesized that comparison of program effects would be more accurate if exercise was quantified relative to intensity-related maximums.


Asunto(s)
Entrenamiento de Intervalos de Alta Intensidad , Metabolismo Energético , Ejercicio Físico , Terapia por Ejercicio/métodos , Entrenamiento de Intervalos de Alta Intensidad/métodos , Humanos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda