Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Emerg Infect Dis ; 30(8): 1580-1588, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39043398

RESUMEN

Wastewater surveillance is an effective way to track the prevalence of infectious agents within a community and, potentially, the spread of pathogens between jurisdictions. We conducted a retrospective wastewater surveillance study of the 2022-23 influenza season in 2 communities, Detroit, Michigan, USA, and Windsor-Essex, Ontario, Canada, that form North America's largest cross-border conurbation. We observed a positive relationship between influenza-related hospitalizations and the influenza A virus (IAV) wastewater signal in Windsor-Essex (ρ = 0.785; p<0.001) and an association between influenza-related hospitalizations in Michigan and the IAV wastewater signal for Detroit (ρ = 0.769; p<0.001). Time-lagged cross correlation and qualitative examination of wastewater signal in the monitored sewersheds showed the peak of the IAV season in Detroit was delayed behind Windsor-Essex by 3 weeks. Wastewater surveillance for IAV reflects regional differences in infection dynamics which may be influenced by many factors, including the timing of vaccine administration between jurisdictions.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Aguas Residuales , Ontario/epidemiología , Humanos , Michigan/epidemiología , Gripe Humana/epidemiología , Aguas Residuales/virología , Estudios Retrospectivos , Estaciones del Año , Historia del Siglo XXI , Hospitalización
2.
J Am Assoc Lab Anim Sci ; 63(2): 107-115, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38182133

RESUMEN

Vibration is inherent in research animal facilities due to the mechanical systems and practices required for animal care and use. Ample evidence indicates that vibration can change behavior and physiology in multiple species, potentially altering the results of research studies. Although one cannot eliminate environmental vibration, its control is important in research animal environments to decrease the possibility of introducing a research variable due to vibration effects. To assess the potential for a vibration source to alter experimental results and variability, one must understand the principles of vibration, its likely sources, and control methods. The literature regarding the effects of vibration, as it applies in a practical sense, can be challenging to interpret because the vibration frequencies tested to date have often not been within or near the most sensitive ranges of the species being tested. Some previous studies have used unrealistic vibration magnitudes and provided insufficient detail to duplicate or build upon conclusions. Standardization is essential for research examining the effects of vibration on animals to validate knowledge of this extrinsic variable in animal research and identify ways to mitigate the variable in research facilities.


Asunto(s)
Animales de Laboratorio , Vibración , Vibración/efectos adversos , Animales , Animales de Laboratorio/fisiología , Experimentación Animal/normas
3.
Water Environ Res ; 96(4): e11024, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38666418

RESUMEN

Wastewater management decision-making is complicated because of: (1) a complex regulatory structure, (2) the wide variety of conflicting expectations by stakeholders external and internal to the responsible utility, and (2) constrains including regulatory requirements, available technologies and practices, and customer willingness to pay. This review synthesizes the results from over 200 papers published since 2000 and presents a decision-making structure and process which is (1) science and fact-based, (2) reflects sustainability, (3) clear and transparent, (4) inclusive, (5) produces an objective-oriented decision, (6) scalable, (7) repeatable, and (8) efficient. Tools supporting the decision-making process are reviewed, including Multi-Criteria Decision Analysis (MCDA), Data Envelopment Analysis (DEA), Analytic Hierarchy Process (AHP), process modeling, economic assessments, Life Cycle Assessment (LCA), and Social Life Cycle Assessment (SLCA). Ultimately it was determined that engagement of decision-makers and relevant stakeholders to assess their values and preferences, coupled with supporting data and analyses, is necessary to reach a decision that, critically, has the support needed for it to be implemented. The results demonstrate that an understanding of the components of the decision process, coupled with an orderly process, enables good wastewater management decision-making. PRACTITIONER POINTS: A decision-making structure and process leading to the selection of implementable solutions is presented. The process possesses the following attributes: (1) science and fact-based, (2) reflect sustainability, (3) clear and transparent, (4) inclusive, (5) produce an objective-oriented decision, (6) scalable, (7) repeatable, and (8) efficient An extensive summary and analysis of tools supporting the decision process are provided, including Multi-Criteria Decision Analysis (MCDA), Data Envelopment Analysis (DEA), Analytic Hierarchy Process (AHP), process modeling, economic assessments, Life Cycle Assessment (LCA), and Social Life Cycle Assessment (SLCA). The critical role of internal and external stakeholders and differentiating their involvement relative to decision-makers is emphasized.


Asunto(s)
Toma de Decisiones , Eliminación de Residuos Líquidos , Aguas Residuales , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Técnicas de Apoyo para la Decisión
4.
J Environ Qual ; 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004957

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are refractory anthropogenic chemicals and current treatment processes at municipal water resource recovery facilities (WRRFs) cannot efficiently degrade them, hence, these chemicals cycle through the environment. Certain PFAS can be concentrated in biosolids from WRRFs and are commonly land applied for beneficial reuse. Given recent advances in measurement of PFAS, documentation of the range of concentrations in pre-stabilized sludge and stabilized biosolids is critical to evaluating treatment best practices and assessing potential human health and ecological risks. In this study, pre-stabilized sludge and post-stabilized biosolids samples were collected from 12 major WRRFs across the United States. PFAS were analyzed using Environmental Protection Agency (EPA) Method SW846-3500C/537.1, and Draft EPA Method 1633, by one commercial laboratory and two university research laboratories, respectively. Results comparison among laboratories demonstrated statistical differences in PFAS concentrations among split samples. For example, 5:3 FTCA (fluorotelomer carboxylic acid) concentrations in post-stabilized sludge at Lab 1 were measured at 21 ng/g (dry), while they were detected at 151 ng/g (dry) in Lab 3. Further, higher PFAS concentrations were observed in post-stabilized biosolids compared to pre-stabilized sludges, regardless of the laboratory or analysis method, even when solids destruction through solids stabilization was considered. Further research is required to refine methods for analyses of PFAS in sludge and biosolids samples from WRRFs prior to being used for development of regulatory actions as well as understanding how various treatment protocols could impact concentrations of PFAS in land-applied biosolids.

5.
Water Environ Res ; 96(3): e11009, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38444297

RESUMEN

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are an emerging issue in wastewater treatment. High-temperature thermal processes, incineration being time-tested, offer the opportunity to destroy and change the composition of PFAS. The fate of PFAS has been documented through wastewater sludge incinerators, including a multiple hearth furnace (MHF) and a fluidized bed furnace (FBF). The dewatered wastewater sludge feedstock averaged 247- and 1280-µmol targeted PFAS per sample run in MHF and FBF feed, respectively. Stack emissions (reportable for all targeted PFAS from MHF only) averaged 5% of that value with shorter alkyl chain compounds comprising the majority of the targeted PFAS. Wet scrubber water streams accumulated nonpolar fluorinated organics from the furnace exhaust with an average of 0.740- and 0.114-mol F- per sample run, for the MHF and FBF, respectively. Simple alkane PFAS measured at the stack represented 0.5%-4.5% of the total estimated facility greenhouse gas emissions. PRACTITIONER POINTS: The MHF emitted six short chain PFAS from the stack, which were shorter alkyl chain compounds compared with sludge PFAS. The FBF did not consistently emit reportable PFAS from the stack, but contamination complicated the assessment. Five percent of the MHF sludge molar PFAS load was reported in the stack. MHF and FBF wet scrubber water streams accumulated nonpolar fluorinated organics from the furnace exhaust. Ultra-short volatile alkane PFAS measured at the stack represented 0.5%-4.5% of the estimated facility greenhouse gas emissions.


Asunto(s)
Fluorocarburos , Gases de Efecto Invernadero , Aguas del Alcantarillado , Aguas Residuales , Alcanos , Incineración , Agua
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda