Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
ACS Appl Mater Interfaces ; 15(19): 22999-23011, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37132437

RESUMEN

CuFeS2 chalcopyrite nanoparticles (NPs) can generate heat under exposure to near-infrared laser irradiation. Here, we develop a protocol to decorate the surface of CuFeS2 NPs (13 nm) with a thermoresponsive (TR) polymer based on poly(ethylene glycol methacrylate) to combine heat-mediated drug delivery and photothermal heat damage. The resulting TR-CuFeS2 NPs feature a small hydrodynamic size (∼75 nm), along with high colloidal stability and a TR transition temperature of 41 °C in physiological conditions. Remarkably, TR-CuFeS2 NPs, when exposed to a laser beam (in the range of 0.5 and 1.5 W/cm2) at NP concentrations as low as 40-50 µg Cu/mL, exhibit a high heating performance with a rise in the solution temperature to hyperthermia therapeutic values (42-45 °C). Furthermore, TR-CuFeS2 NPs worked as nanocarriers, being able to load an appreciable amount of doxorubicin (90 µg DOXO/mg Cu), a chemotherapeutic agent whose release could then be triggered by exposing the NPs to a laser beam (through which a hyperthermia temperature above 42 °C could be reached). In an in vitro study performed on U87 human glioblastoma cells, bare TR-CuFeS2 NPs were proven to be nontoxic at a Cu concentration up to 40 µg/mL, while at the same low dose, the drug-loaded TR-CuFeS2-DOXO NPs displayed synergistic cytotoxic effects due to the combination of direct heat damage and DOXO chemotherapy, under photo-irradiation by a 808 nm laser (1.2 W/cm2). Finally, under a 808 nm laser, the TR-CuFeS2 NPs generated a tunable amount of reactive oxygen species depending on the applied power density and NP concentration.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Humanos , Polímeros , Hipertermia Inducida/métodos , Sistemas de Liberación de Medicamentos , Fototerapia , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Línea Celular Tumoral
2.
J Colloid Interface Sci ; 607(Pt 1): 34-44, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34492351

RESUMEN

Among the strategies to fight cancer, multi-therapeutic approaches are considered as a wise choice to put in place multiple weapons to suppress tumors. In this work, to combine chemotherapeutic effects to magnetic hyperthermia when using biocompatible scaffolds, we have established an electrospinning method to produce nanofibers of polycaprolactone loaded with magnetic nanoparticles as heat mediators to be selectively activated under alternating magnetic field and doxorubicin as a chemotherapeutic drug. Production of the fibers was investigated with iron oxide nanoparticles of peculiar cubic shape (at 15 and 23 nm in cube edges) as they provide benchmark heat performance under clinical magnetic hyperthermia conditions. With 23 nm nanocubes when included into the fibers, an arrangement in chains was obtained. This linear configuration of magnetic nanoparticles resemble that of the magnetosomes, produced by magnetotactic bacteria, and our magnetic fibers exhibited remarkable heating effects as the magnetosomes. Magnetic fiber scaffolds showed excellent biocompatibility on fibroblast cells when missing the chemotherapeutic agent and when not exposed to magnetic hyperthermia as shown by viability assays. On the contrary, the fibers containing both magnetic nanocubes and doxorubicin showed significant cytotoxic effects on cervical cancer cells following the exposure to magnetic hyperthermia. Notably, these tests were conducted at magnetic hyperthermia field conditions of clinical use. As here shown, on the doxorubicin sensitive cervical cancer cells, the combination of heat damage by magnetic hyperthermia with enhanced diffusion of doxorubicin at therapeutic temperature are responsible for a more effective oncotherapy.


Asunto(s)
Hipertermia Inducida , Nanopartículas de Magnetita , Neoplasias , Línea Celular Tumoral , Doxorrubicina/farmacología , Compuestos Férricos , Campos Magnéticos , Poliésteres
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda