Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Environ Manage ; 367: 122012, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39094417

RESUMEN

Recycling spent batteries is increasingly important for the sustainable use of Li-ion batteries (LIBs) and for countering the supply uncertainty of critical raw minerals (Li, Co, and Ni). Bioleaching, which uses microorganisms to extract valuable metals, is both economical and environmentally safe compared to other recycling methods, but its practical application is impaired by slow kinetics. Accelerating the process is a key for bioleaching spent LIBs on an industrial scale. Acidithiobacillus ferrooxidans (A. ferrooxidans), which thrives in extremely low pH conditions, has long been explored for bioleaching of spent LIBs. Metabolism of A. ferrooxidans involves the oxidation of magnetic Fe2+ and produces intracellular magnetic nanoparticles. The possibility of accelerating the leaching kinetics of A. ferrooxidans by the application of an external magnetic field is explored in this work. A weak static magnetic field is applied during the bioleaching of spent LIBs to recover Li, Ni, and Co using A. ferrooxidans. It is determined that 3 mT is the optimal field strength which allows the leaching efficiency of Li to reach 100% after only 2 days of leaching at a pulp density of 3 w/v % while without the external magnetic field, the leaching efficiency is limited to 57% even after 4 days. The leaching efficiency of Ni and Co also increases by nearly three-fold to >80% after 4 days of leaching. The proposed magnetic field-assisted bioleaching of spent LIBs using A. ferrooxidans substantially improves the leaching kinetics and thus the cost-effectiveness of the bioleaching process with minimal environmental impact, hence enabling environment-friendly recycling of raw materials that are increasingly becoming scarce. The positive effect of an external magnetic field on the metabolism of A. ferrooxidans demonstrated in this work provide a new set of tools to engineer the bioleaching process and the possibility for genetic modification of acidophile bacteria, especially targeted for magnetic enhancement.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda