Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Nature ; 616(7958): 755-763, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37046083

RESUMEN

Mutations in a diverse set of driver genes increase the fitness of haematopoietic stem cells (HSCs), leading to clonal haematopoiesis1. These lesions are precursors for blood cancers2-6, but the basis of their fitness advantage remains largely unknown, partly owing to a paucity of large cohorts in which the clonal expansion rate has been assessed by longitudinal sampling. Here, to circumvent this limitation, we developed a method to infer the expansion rate from data from a single time point. We applied this method to 5,071 people with clonal haematopoiesis. A genome-wide association study revealed that a common inherited polymorphism in the TCL1A promoter was associated with a slower expansion rate in clonal haematopoiesis overall, but the effect varied by driver gene. Those carrying this protective allele exhibited markedly reduced growth rates or prevalence of clones with driver mutations in TET2, ASXL1, SF3B1 and SRSF2, but this effect was not seen in clones with driver mutations in DNMT3A. TCL1A was not expressed in normal or DNMT3A-mutated HSCs, but the introduction of mutations in TET2 or ASXL1 led to the expression of TCL1A protein and the expansion of HSCs in vitro. The protective allele restricted TCL1A expression and expansion of mutant HSCs, as did experimental knockdown of TCL1A expression. Forced expression of TCL1A promoted the expansion of human HSCs in vitro and mouse HSCs in vivo. Our results indicate that the fitness advantage of several commonly mutated driver genes in clonal haematopoiesis may be mediated by TCL1A activation.


Asunto(s)
Hematopoyesis Clonal , Células Madre Hematopoyéticas , Animales , Humanos , Ratones , Alelos , Hematopoyesis Clonal/genética , Estudio de Asociación del Genoma Completo , Hematopoyesis/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Mutación , Regiones Promotoras Genéticas
2.
Nat Methods ; 19(12): 1599-1611, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36303018

RESUMEN

Large-scale whole-genome sequencing studies have enabled analysis of noncoding rare-variant (RV) associations with complex human diseases and traits. Variant-set analysis is a powerful approach to study RV association. However, existing methods have limited ability in analyzing the noncoding genome. We propose a computationally efficient and robust noncoding RV association detection framework, STAARpipeline, to automatically annotate a whole-genome sequencing study and perform flexible noncoding RV association analysis, including gene-centric analysis and fixed window-based and dynamic window-based non-gene-centric analysis by incorporating variant functional annotations. In gene-centric analysis, STAARpipeline uses STAAR to group noncoding variants based on functional categories of genes and incorporate multiple functional annotations. In non-gene-centric analysis, STAARpipeline uses SCANG-STAAR to incorporate dynamic window sizes and multiple functional annotations. We apply STAARpipeline to identify noncoding RV sets associated with four lipid traits in 21,015 discovery samples from the Trans-Omics for Precision Medicine (TOPMed) program and replicate several of them in an additional 9,123 TOPMed samples. We also analyze five non-lipid TOPMed traits.


Asunto(s)
Estudio de Asociación del Genoma Completo , Genoma , Humanos , Estudio de Asociación del Genoma Completo/métodos , Secuenciación Completa del Genoma/métodos , Fenotipo , Variación Genética
3.
Hum Mol Genet ; 31(3): 347-361, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34553764

RESUMEN

Platelets play a key role in thrombosis and hemostasis. Platelet count (PLT) and mean platelet volume (MPV) are highly heritable quantitative traits, with hundreds of genetic signals previously identified, mostly in European ancestry populations. We here utilize whole genome sequencing (WGS) from NHLBI's Trans-Omics for Precision Medicine initiative (TOPMed) in a large multi-ethnic sample to further explore common and rare variation contributing to PLT (n = 61 200) and MPV (n = 23 485). We identified and replicated secondary signals at MPL (rs532784633) and PECAM1 (rs73345162), both more common in African ancestry populations. We also observed rare variation in Mendelian platelet-related disorder genes influencing variation in platelet traits in TOPMed cohorts (not enriched for blood disorders). For example, association of GP9 with lower PLT and higher MPV was partly driven by a pathogenic Bernard-Soulier syndrome variant (rs5030764, p.Asn61Ser), and the signals at TUBB1 and CD36 were partly driven by loss of function variants not annotated as pathogenic in ClinVar (rs199948010 and rs571975065). However, residual signal remained for these gene-based signals after adjusting for lead variants, suggesting that additional variants in Mendelian genes with impacts in general population cohorts remain to be identified. Gene-based signals were also identified at several genome-wide association study identified loci for genes not annotated for Mendelian platelet disorders (PTPRH, TET2, CHEK2), with somatic variation driving the result at TET2. These results highlight the value of WGS in populations of diverse genetic ancestry to identify novel regulatory and coding signals, even for well-studied traits like platelet traits.


Asunto(s)
Estudio de Asociación del Genoma Completo , Medicina de Precisión , Plaquetas , Humanos , National Heart, Lung, and Blood Institute (U.S.) , Fenotipo , Polimorfismo de Nucleótido Simple , Medicina de Precisión/métodos , Estados Unidos
4.
Bioinformatics ; 39(3)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36897019

RESUMEN

MOTIVATION: The amount of genomic data is increasing exponentially. Using many genotyped and phenotyped individuals for genomic prediction is appealing yet challenging. RESULTS: We present SLEMM (short for Stochastic-Lanczos-Expedited Mixed Models), a new software tool, to address the computational challenge. SLEMM builds on an efficient implementation of the stochastic Lanczos algorithm for REML in a framework of mixed models. We further implement SNP weighting in SLEMM to improve its predictions. Extensive analyses on seven public datasets, covering 19 polygenic traits in three plant and three livestock species, showed that SLEMM with SNP weighting had overall the best predictive ability among a variety of genomic prediction methods including GCTA's empirical BLUP, BayesR, KAML, and LDAK's BOLT and BayesR models. We also compared the methods using nine dairy traits of ∼300k genotyped cows. All had overall similar prediction accuracies, except that KAML failed to process the data. Additional simulation analyses on up to 3 million individuals and 1 million SNPs showed that SLEMM was advantageous over counterparts as for computational performance. Overall, SLEMM can do million-scale genomic predictions with an accuracy comparable to BayesR. AVAILABILITY AND IMPLEMENTATION: The software is available at https://github.com/jiang18/slemm.


Asunto(s)
Genoma , Polimorfismo de Nucleótido Simple , Femenino , Animales , Bovinos , Teorema de Bayes , Genómica/métodos , Genotipo , Fenotipo , Modelos Genéticos
5.
Hum Mol Genet ; 30(15): 1443-1456, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-33856023

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease and is highly correlated with metabolic disease. NAFLD results from environmental exposures acting on a susceptible polygenic background. This study performed the largest multiethnic investigation of exonic variation associated with NAFLD and correlated metabolic traits and diseases. An exome array meta-analysis was carried out among eight multiethnic population-based cohorts (n = 16 492) with computed tomography (CT) measured hepatic steatosis. A fixed effects meta-analysis identified five exome-wide significant loci (P < 5.30 × 10-7); including a novel signal near TOMM40/APOE. Joint analysis of TOMM40/APOE variants revealed the TOMM40 signal was attributed to APOE rs429358-T; APOE rs7412 was not associated with liver attenuation. Moreover, rs429358-T was associated with higher serum alanine aminotransferase, liver steatosis, cirrhosis, triglycerides and obesity; as well as, lower cholesterol and decreased risk of myocardial infarction and Alzheimer's disease (AD) in phenome-wide association analyses in the Michigan Genomics Initiative, United Kingdom Biobank and/or public datasets. These results implicate APOE in imaging-based identification of NAFLD. This association may or may not translate to nonalcoholic steatohepatitis; however, these results indicate a significant association with advanced liver disease and hepatic cirrhosis. These findings highlight allelic heterogeneity at the APOE locus and demonstrate an inverse link between NAFLD and AD at the exome level in the largest analysis to date.


Asunto(s)
Apolipoproteínas E/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Obesidad/genética , Alanina Transaminasa , Alelos , Enfermedad de Alzheimer/genética , Apolipoproteínas E/metabolismo , Bases de Datos Genéticas , Exoma/genética , Frecuencia de los Genes/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Hígado , Cirrosis Hepática/genética , Infarto del Miocardio/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/metabolismo , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Pronóstico , Factores de Riesgo , Triglicéridos
6.
Proc Natl Acad Sci U S A ; 117(5): 2560-2569, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31964835

RESUMEN

De novo mutations (DNMs), or mutations that appear in an individual despite not being seen in their parents, are an important source of genetic variation whose impact is relevant to studies of human evolution, genetics, and disease. Utilizing high-coverage whole-genome sequencing data as part of the Trans-Omics for Precision Medicine (TOPMed) Program, we called 93,325 single-nucleotide DNMs across 1,465 trios from an array of diverse human populations, and used them to directly estimate and analyze DNM counts, rates, and spectra. We find a significant positive correlation between local recombination rate and local DNM rate, and that DNM rate explains a substantial portion (8.98 to 34.92%, depending on the model) of the genome-wide variation in population-level genetic variation from 41K unrelated TOPMed samples. Genome-wide heterozygosity does correlate with DNM rate, but only explains <1% of variation. While we are underpowered to see small differences, we do not find significant differences in DNM rate between individuals of European, African, and Latino ancestry, nor across ancestrally distinct segments within admixed individuals. However, we did find significantly fewer DNMs in Amish individuals, even when compared with other Europeans, and even after accounting for parental age and sequencing center. Specifically, we found significant reductions in the number of C→A and T→C mutations in the Amish, which seem to underpin their overall reduction in DNMs. Finally, we calculated near-zero estimates of narrow sense heritability (h2), which suggest that variation in DNM rate is significantly shaped by nonadditive genetic effects and the environment.


Asunto(s)
Amish/genética , Genoma Humano , Adulto , Estudios de Cohortes , Análisis Mutacional de ADN , Femenino , Genética de Población , Heterocigoto , Humanos , Masculino , Mutación , Linaje , Secuenciación Completa del Genoma , Adulto Joven
7.
Am J Hum Genet ; 105(4): 706-718, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31564435

RESUMEN

Hemoglobin A1c (HbA1c) is widely used to diagnose diabetes and assess glycemic control in individuals with diabetes. However, nonglycemic determinants, including genetic variation, may influence how accurately HbA1c reflects underlying glycemia. Analyzing the NHLBI Trans-Omics for Precision Medicine (TOPMed) sequence data in 10,338 individuals from five studies and four ancestries (6,158 Europeans, 3,123 African-Americans, 650 Hispanics, and 407 East Asians), we confirmed five regions associated with HbA1c (GCK in Europeans and African-Americans, HK1 in Europeans and Hispanics, FN3K and/or FN3KRP in Europeans, and G6PD in African-Americans and Hispanics) and we identified an African-ancestry-specific low-frequency variant (rs1039215 in HBG2 and HBE1, minor allele frequency (MAF) = 0.03). The most associated G6PD variant (rs1050828-T, p.Val98Met, MAF = 12% in African-Americans, MAF = 2% in Hispanics) lowered HbA1c (-0.88% in hemizygous males, -0.34% in heterozygous females) and explained 23% of HbA1c variance in African-Americans and 4% in Hispanics. Additionally, we identified a rare distinct G6PD coding variant (rs76723693, p.Leu353Pro, MAF = 0.5%; -0.98% in hemizygous males, -0.46% in heterozygous females) and detected significant association with HbA1c when aggregating rare missense variants in G6PD. We observed similar magnitude and direction of effects for rs1039215 (HBG2) and rs76723693 (G6PD) in the two largest TOPMed African American cohorts, and we replicated the rs76723693 association in the UK Biobank African-ancestry participants. These variants in G6PD and HBG2 were monomorphic in the European and Asian samples. African or Hispanic ancestry individuals carrying G6PD variants may be underdiagnosed for diabetes when screened with HbA1c. Thus, assessment of these variants should be considered for incorporation into precision medicine approaches for diabetes diagnosis.


Asunto(s)
Diabetes Mellitus/diagnóstico , Diabetes Mellitus/genética , Variación Genética , Hemoglobina Glucada/genética , Grupos de Población/genética , Medicina de Precisión , Estudios de Cohortes , Femenino , Humanos , Masculino , Polimorfismo de Nucleótido Simple
8.
Am J Hum Genet ; 104(2): 260-274, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30639324

RESUMEN

With advances in whole-genome sequencing (WGS) technology, more advanced statistical methods for testing genetic association with rare variants are being developed. Methods in which variants are grouped for analysis are also known as variant-set, gene-based, and aggregate unit tests. The burden test and sequence kernel association test (SKAT) are two widely used variant-set tests, which were originally developed for samples of unrelated individuals and later have been extended to family data with known pedigree structures. However, computationally efficient and powerful variant-set tests are needed to make analyses tractable in large-scale WGS studies with complex study samples. In this paper, we propose the variant-set mixed model association tests (SMMAT) for continuous and binary traits using the generalized linear mixed model framework. These tests can be applied to large-scale WGS studies involving samples with population structure and relatedness, such as in the National Heart, Lung, and Blood Institute's Trans-Omics for Precision Medicine (TOPMed) program. SMMATs share the same null model for different variant sets, and a virtue of this null model, which includes covariates only, is that it needs to be fit only once for all tests in each genome-wide analysis. Simulation studies show that all the proposed SMMATs correctly control type I error rates for both continuous and binary traits in the presence of population structure and relatedness. We also illustrate our tests in a real data example of analysis of plasma fibrinogen levels in the TOPMed program (n = 23,763), using the Analysis Commons, a cloud-based computing platform.


Asunto(s)
Estudios de Asociación Genética , Modelos Genéticos , Secuenciación Completa del Genoma , Cromosomas Humanos Par 4/genética , Nube Computacional , Femenino , Fibrinógeno/análisis , Fibrinógeno/genética , Genética de Población , Humanos , Masculino , National Heart, Lung, and Blood Institute (U.S.) , Medicina de Precisión , Proyectos de Investigación , Factores de Tiempo , Estados Unidos
9.
Genet Epidemiol ; 43(3): 263-275, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30653739

RESUMEN

When testing genotype-phenotype associations using linear regression, departure of the trait distribution from normality can impact both Type I error rate control and statistical power, with worse consequences for rarer variants. Because genotypes are expected to have small effects (if any) investigators now routinely use a two-stage method, in which they first regress the trait on covariates, obtain residuals, rank-normalize them, and then use the rank-normalized residuals in association analysis with the genotypes. Potential confounding signals are assumed to be removed at the first stage, so in practice, no further adjustment is done in the second stage. Here, we show that this widely used approach can lead to tests with undesirable statistical properties, due to both combination of a mis-specified mean-variance relationship and remaining covariate associations between the rank-normalized residuals and genotypes. We demonstrate these properties theoretically, and also in applications to genome-wide and whole-genome sequencing association studies. We further propose and evaluate an alternative fully adjusted two-stage approach that adjusts for covariates both when residuals are obtained and in the subsequent association test. This method can reduce excess Type I errors and improve statistical power.


Asunto(s)
Estudios de Asociación Genética , Modelos Genéticos , Simulación por Computador , Estudio de Asociación del Genoma Completo , Genotipo , Hemoglobinas/metabolismo , Hispánicos o Latinos , Humanos , Modelos Lineales , Fenotipo
10.
Platelets ; 30(2): 164-173, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29185836

RESUMEN

Previous genome-wide association studies (GWAS) have identified several variants associated with platelet function phenotypes; however, the proportion of variance explained by the identified variants is mostly small. Rare coding variants, particularly those with high potential for impact on protein structure/function, may have substantial impact on phenotype but are difficult to detect by GWAS. The main purpose of this study was to identify low frequency or rare variants associated with platelet function using genotype data from the Illumina HumanExome Bead Chip. Three family-based cohorts of European ancestry, including ~4,000 total subjects, comprised the discovery cohort and two independent cohorts, one of European and one of African American ancestry, were used for replication. Optical aggregometry in platelet-rich plasma was performed in all the discovery cohorts in response to adenosine diphosphate (ADP), epinephrine, and collagen. Meta-analyses were performed using both gene-based and single nucleotide variant association methods. The gene-based meta-analysis identified a significant association (P = 7.13 × 10-7) between rare genetic variants in ANKRD26 and ADP-induced platelet aggregation. One of the ANKRD26 SNVs - rs191015656, encoding a threonine to isoleucine substitution predicted to alter protein structure/function, was replicated in Europeans. Aggregation increases of ~20-50% were observed in heterozygotes in all cohorts. Novel genetic signals in ABCG1 and HCP5 were also associated with platelet aggregation to ADP in meta-analyses, although only results for HCP5 could be replicated. The SNV in HCP5 intersects epigenetic signatures in CD41+ megakaryocytes suggesting a new functional role in platelet biology for HCP5. This is the first study to use gene-based association methods from SNV array genotypes to identify rare variants related to platelet function. The molecular mechanisms and pathophysiological relevance for the identified genetic associations requires further study.


Asunto(s)
Exoma/genética , Proteínas Nucleares/genética , Agregación Plaquetaria/genética , Adulto , Femenino , Humanos , Péptidos y Proteínas de Señalización Intercelular , Masculino , Persona de Mediana Edad
11.
PLoS Genet ; 11(11): e1005387, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26540184

RESUMEN

Meiotic recombination is an essential biological process that generates genetic diversity and ensures proper segregation of chromosomes during meiosis. From a large USDA dairy cattle pedigree with over half a million genotyped animals, we extracted 186,927 three-generation families, identified over 8.5 million maternal and paternal recombination events, and constructed sex-specific recombination maps for 59,309 autosomal SNPs. The recombination map spans for 25.5 Morgans in males and 23.2 Morgans in females, for a total studied region of 2,516 Mb (986 kb/cM in males and 1,085 kb/cM in females). The male map is 10% longer than the female map and the sex difference is most pronounced in the subtelomeric regions. We identified 1,792 male and 1,885 female putative recombination hotspots, with 720 hotspots shared between sexes. These hotspots encompass 3% of the genome but account for 25% of the genome-wide recombination events in both sexes. During the past forty years, males showed a decreasing trend in recombination rate that coincided with the artificial selection for milk production. Sex-specific GWAS analyses identified PRDM9 and CPLX1 to have significant effects on genome-wide recombination rate in both sexes. Two novel loci, NEK9 and REC114, were associated with recombination rate in both sexes, whereas three loci, MSH4, SMC3 and CEP55, affected recombination rate in females only. Among the multiple PRDM9 paralogues on the bovine genome, our GWAS of recombination hotspot usage together with linkage analysis identified the PRDM9 paralogue on chromosome 1 to be associated in the U.S. Holstein data. Given the largest sample size ever reported for such studies, our results reveal new insights into the understanding of cattle and mammalian recombination.


Asunto(s)
Bovinos/genética , Linaje , Recombinación Genética , Animales , Mapeo Cromosómico , Femenino , Masculino
12.
BMC Genomics ; 18(1): 425, 2017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28558656

RESUMEN

BACKGROUND: Although genome-wide association and genomic selection studies have primarily focused on additive effects, dominance and imprinting effects play an important role in mammalian biology and development. The degree to which these non-additive genetic effects contribute to phenotypic variation and whether QTL acting in a non-additive manner can be detected in genetic association studies remain controversial. RESULTS: To empirically answer these questions, we analyzed a large cattle dataset that consisted of 42,701 genotyped Holstein cows with genotyped parents and phenotypic records for eight production and reproduction traits. SNP genotypes were phased in pedigree to determine the parent-of-origin of alleles, and a three-component GREML was applied to obtain variance decomposition for additive, dominance, and imprinting effects. The results showed a significant non-zero contribution from dominance to production traits but not to reproduction traits. Imprinting effects significantly contributed to both production and reproduction traits. Interestingly, imprinting effects contributed more to reproduction traits than to production traits. Using GWAS and imputation-based fine-mapping analyses, we identified and validated a dominance association signal with milk yield near RUNX2, a candidate gene that has been associated with milk production in mice. When adding non-additive effects into the prediction models, however, we observed little or no increase in prediction accuracy for the eight traits analyzed. CONCLUSIONS: Collectively, our results suggested that non-additive effects contributed a non-negligible amount (more for reproduction traits) to the total genetic variance of complex traits in cattle, and detection of QTLs with non-additive effect is possible in GWAS using a large dataset.


Asunto(s)
Bovinos/genética , Bovinos/fisiología , Estudio de Asociación del Genoma Completo , Impresión Genómica , Reproducción/genética , Animales , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/genética
13.
Hum Mol Genet ; 24(8): 2390-400, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25575512

RESUMEN

Lipoprotein (a) [Lp(a)] is an independent risk factor for atherosclerosis-related events that is under strong genetic control (heritability = 0.68-0.98). However, causal mutations and functional validation of biological pathways modulating Lp(a) metabolism are lacking. We performed a genome-wide association scan to identify genetic variants associated with Lp(a)-cholesterol levels in the Old Order Amish. We confirmed a previously known locus on chromosome 6q25-26 and found Lp(a) levels also to be significantly associated with a SNP near the APOA5-APOA4-APOC3-APOA1 gene cluster on chromosome 11q23 linked in the Amish to the APOC3 R19X null mutation. On 6q locus, we detected associations of Lp(a)-cholesterol with 118 common variants (P = 5 × 10(-8) to 3.91 × 10(-19)) spanning a ∼5.3 Mb region that included the LPA gene. To further elucidate variation within LPA, we sequenced LPA and identified two variants most strongly associated with Lp(a)-cholesterol, rs3798220 (P = 1.07 × 10(-14)) and rs10455872 (P = 1.85 × 10(-12)). We also measured copy numbers of kringle IV-2 (KIV-2) in LPA using qPCR. KIV-2 numbers were significantly associated with Lp(a)-cholesterol (P = 2.28 × 10(-9)). Conditional analyses revealed that rs3798220 and rs10455872 were associated with Lp(a)-cholesterol levels independent of each other and KIV-2 copy number. Furthermore, we determined for the first time that levels of LPA mRNA were higher in the carriers than non-carriers of rs10455872 (P = 0.0001) and were not different between carriers and non-carriers of rs3798220. Protein levels of apo(a) were higher in the carriers than non-carriers of both rs10455872 and rs3798220. In summary, we identified multiple independent genetic determinants for Lp(a)-cholesterol. These findings provide new insights into Lp(a) regulation.


Asunto(s)
Aterosclerosis/genética , Colesterol/metabolismo , Lipoproteína(a)/genética , Adulto , Anciano , Aterosclerosis/metabolismo , Cromosomas Humanos Par 6/genética , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Kringles , Lipoproteína(a)/química , Lipoproteína(a)/metabolismo , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple
14.
Pharmacogenet Genomics ; 27(4): 159-163, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28207573

RESUMEN

Clopidogrel is one of the most commonly used therapeutics for the secondary prevention of cardiovascular events in patients with acute coronary syndromes. However, considerable interindividual variation in clopidogrel response has been documented, resulting in suboptimal therapy and an increased risk of recurrent events for some patients. In this investigation, we carried out the first genome-wide association study of circulating clopidogrel active metabolite levels in 513 healthy participants to directly measure clopidogrel pharmacokinetics. We observed that the CYP2C19 locus was the strongest genetic determinant of active metabolite formation (P=9.5×10). In addition, we identified novel genome-wide significant variants on chromosomes 3p25 (rs187941554, P=3.3×10) and 17q11 (rs80343429, P=1.3×10), as well as six additional loci that showed suggestive evidence of association (P≤1.0×10). Four of these loci showed nominal associations with on-clopidogrel ADP-stimulated platelet aggregation (P≤0.05). Evaluation of clopidogrel active metabolite concentration may help identify novel genetic determinants of clopidogrel response, which has implications for the development of novel therapeutics and improved antiplatelet treatment for at-risk patients in the future.


Asunto(s)
Cromosomas Humanos Par 17/genética , Cromosomas Humanos Par 3/genética , Citocromo P-450 CYP2C19/genética , Inhibidores de Agregación Plaquetaria/administración & dosificación , Ticlopidina/análogos & derivados , Adulto , Clopidogrel , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Variantes Farmacogenómicas , Inhibidores de Agregación Plaquetaria/farmacocinética , Polimorfismo de Nucleótido Simple , Ticlopidina/administración & dosificación , Ticlopidina/farmacocinética
15.
N Engl J Med ; 370(24): 2307-2315, 2014 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-24848981

RESUMEN

BACKGROUND: Lipolysis regulates energy homeostasis through the hydrolysis of intracellular triglycerides and the release of fatty acids for use as energy substrates or lipid mediators in cellular processes. Genes encoding proteins that regulate energy homeostasis through lipolysis are thus likely to play an important role in determining susceptibility to metabolic disorders. METHODS: We sequenced 12 lipolytic-pathway genes in Old Order Amish participants whose fasting serum triglyceride levels were at the extremes of the distribution and identified a novel 19-bp frameshift deletion in exon 9 of LIPE, encoding hormone-sensitive lipase (HSL), a key enzyme for lipolysis. We genotyped the deletion in DNA from 2738 Amish participants and performed association analyses to determine the effects of the deletion on metabolic traits. We also obtained biopsy specimens of abdominal subcutaneous adipose tissue from 2 study participants who were homozygous for the deletion (DD genotype), 10 who were heterozygous (ID genotype), and 7 who were noncarriers (II genotype) for assessment of adipose histologic characteristics, lipolysis, enzyme activity, cytokine release, and messenger RNA (mRNA) and protein levels. RESULTS: Carriers of the mutation had dyslipidemia, hepatic steatosis, systemic insulin resistance, and diabetes. In adipose tissue from study participants with the DD genotype, the mutation resulted in the absence of HSL protein, small adipocytes, impaired lipolysis, insulin resistance, and inflammation. Transcription factors responsive to peroxisome-proliferator-activated receptor γ (PPAR-γ) and downstream target genes were down-regulated in adipose tissue from participants with the DD genotype, altering the regulation of pathways influencing adipogenesis, insulin sensitivity, and lipid metabolism. CONCLUSIONS: These findings indicate the physiological significance of HSL in adipocyte function and the regulation of systemic lipid and glucose homeostasis and underscore the severe metabolic consequences of impaired lipolysis. (Funded by the National Institutes of Health and others).


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Mutación del Sistema de Lectura , Predisposición Genética a la Enfermedad , Lipólisis/genética , Esterol Esterasa/genética , Adulto , Anciano , Amish/genética , Diabetes Mellitus Tipo 2/metabolismo , Dislipidemias/genética , Dislipidemias/metabolismo , Femenino , Heterocigoto , Humanos , Resistencia a la Insulina/genética , Masculino , Redes y Vías Metabólicas/genética , Persona de Mediana Edad , Linaje
16.
Genet Sel Evol ; 49(1): 32, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28270096

RESUMEN

BACKGROUND: Millions of genetic variants have been identified by population-scale sequencing projects, but subsets of these variants are needed for routine genomic predictions or genotyping arrays. Methods for selecting sequence variants were compared using simulated sequence genotypes and real July 2015 data from the 1000 Bull Genomes Project. METHODS: Candidate sequence variants for 444 Holstein animals were combined with high-density (HD) imputed genotypes for 26,970 progeny-tested Holstein bulls. Test 1 included single nucleotide polymorphisms (SNPs) for 481,904 candidate sequence variants. Test 2 also included 249,966 insertions-deletions (InDels). After merging sequence variants with 312,614 HD SNPs and editing steps, Tests 1 and 2 included 762,588 and 1,003,453 variants, respectively. Imputation quality from findhap software was assessed with 404 of the sequenced animals in the reference population and 40 randomly chosen animals for validation. Their sequence genotypes were reduced to the subset of genotypes that were in common with HD genotypes and then imputed back to sequence. Predictions were tested for 33 traits using 2015 data of 3983 US validation bulls with daughters that were first phenotyped after August 2011. RESULTS: The average percentage of correctly imputed variants across all chromosomes was 97.2 for Test 1 and 97.0 for Test 2. Total time required to prepare, edit, impute, and estimate the effects of sequence variants for 27,235 bulls was about 1 week using less than 33 threads. Many sequence variants had larger estimated effects than nearby HD SNPs, but prediction reliability improved only by 0.6 percentage points in Test 1 when sequence SNPs were added to HD SNPs and by 0.4 percentage points in Test 2 when sequence SNPs and InDels were included. However, selecting the 16,648 candidate SNPs with the largest estimated effects and adding them to the 60,671 SNPs used in routine evaluations improved reliabilities by 2.7 percentage points. CONCLUSIONS: Reliabilities for genomic predictions improved when selected sequence variants were added; gains were similar for simulated and real data for the same population, and larger than previous gains obtained by adding HD SNPs. With many genotyped animals, many data sources, and millions of variants, computing strategies must efficiently balance costs of imputation, selection, and prediction to obtain subsets of markers that provide the highest accuracy.


Asunto(s)
Cruzamiento/métodos , Bovinos/genética , Estudio de Asociación del Genoma Completo/métodos , Polimorfismo Genético , Algoritmos , Animales , Femenino , Masculino , Leche/metabolismo , Sitios de Carácter Cuantitativo
17.
PLoS Genet ; 10(4): e1004235, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24699409

RESUMEN

Variants in the growth factor receptor-bound protein 10 (GRB10) gene were in a GWAS meta-analysis associated with reduced glucose-stimulated insulin secretion and increased risk of type 2 diabetes (T2D) if inherited from the father, but inexplicably reduced fasting glucose when inherited from the mother. GRB10 is a negative regulator of insulin signaling and imprinted in a parent-of-origin fashion in different tissues. GRB10 knock-down in human pancreatic islets showed reduced insulin and glucagon secretion, which together with changes in insulin sensitivity may explain the paradoxical reduction of glucose despite a decrease in insulin secretion. Together, these findings suggest that tissue-specific methylation and possibly imprinting of GRB10 can influence glucose metabolism and contribute to T2D pathogenesis. The data also emphasize the need in genetic studies to consider whether risk alleles are inherited from the mother or the father.


Asunto(s)
Proteína Adaptadora GRB10/genética , Proteína Adaptadora GRB10/metabolismo , Islotes Pancreáticos/metabolismo , Alelos , Diabetes Mellitus Tipo 2 , Ayuno/metabolismo , Estudio de Asociación del Genoma Completo/métodos , Glucosa/genética , Glucosa/metabolismo , Humanos , Insulina/genética , Insulina/metabolismo , Resistencia a la Insulina/genética , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transducción de Señal/genética
18.
Stroke ; 47(2): 307-16, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26732560

RESUMEN

BACKGROUND AND PURPOSE: Although a genetic contribution to ischemic stroke is well recognized, only a handful of stroke loci have been identified by large-scale genetic association studies to date. Hypothesizing that genetic effects might be stronger for early- versus late-onset stroke, we conducted a 2-stage meta-analysis of genome-wide association studies, focusing on stroke cases with an age of onset <60 years. METHODS: The discovery stage of our genome-wide association studies included 4505 cases and 21 968 controls of European, South-Asian, and African ancestry, drawn from 6 studies. In Stage 2, we selected the lead genetic variants at loci with association P<5×10(-6) and performed in silico association analyses in an independent sample of ≤1003 cases and 7745 controls. RESULTS: One stroke susceptibility locus at 10q25 reached genome-wide significance in the combined analysis of all samples from the discovery and follow-up stages (rs11196288; odds ratio =1.41; P=9.5×10(-9)). The associated locus is in an intergenic region between TCF7L2 and HABP2. In a further analysis in an independent sample, we found that 2 single nucleotide polymorphisms in high linkage disequilibrium with rs11196288 were significantly associated with total plasma factor VII-activating protease levels, a product of HABP2. CONCLUSIONS: HABP2, which encodes an extracellular serine protease involved in coagulation, fibrinolysis, and inflammatory pathways, may be a genetic susceptibility locus for early-onset stroke.


Asunto(s)
Isquemia Encefálica/genética , Serina Endopeptidasas/genética , Accidente Cerebrovascular/genética , Adulto , Edad de Inicio , Anciano , Pueblo Asiatico/genética , Población Negra/genética , Isquemia Encefálica/complicaciones , Cromosomas Humanos Par 10 , Simulación por Computador , ADN Intergénico/genética , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Polimorfismo de Nucleótido Simple , Serina Endopeptidasas/metabolismo , Accidente Cerebrovascular/etiología , Población Blanca/genética
19.
Neuroimage ; 125: 189-197, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26499807

RESUMEN

Speed with which brain performs information processing influences overall cognition and is dependent on the white matter fibers. To understand genetic influences on processing speed and white matter FA, we assessed processing speed and diffusion imaging fractional anisotropy (FA) in related individuals from two populations. Discovery analyses were performed in 146 individuals from large Old Order Amish (OOA) families and findings were replicated in 485 twins and siblings of the Human Connectome Project (HCP). The heritability of processing speed was h(2)=43% and 49% (both p<0.005), while the heritability of whole brain FA was h(2)=87% and 88% (both p<0.001), in the OOA and HCP, respectively. Whole brain FA was significantly correlated with processing speed in the two cohorts. Quantitative genetic analysis demonstrated a significant degree to which common genes influenced joint variation in FA and brain processing speed. These estimates suggested common sets of genes influencing variation in both phenotypes, consistent with the idea that common genetic variations contributing to white matter may also support their associated cognitive behavior.


Asunto(s)
Encéfalo/fisiología , Cognición/fisiología , Genotipo , Sustancia Blanca/fisiología , Adolescente , Adulto , Anciano , Amish/genética , Anisotropía , Mapeo Encefálico , Imagen de Difusión Tensora , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Masculino , Persona de Mediana Edad , Fenotipo , Sistema de Registros , Adulto Joven
20.
Hum Mol Genet ; 23(9): 2498-510, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24345515

RESUMEN

Waist circumference (WC) and waist-to-hip ratio (WHR) are surrogate measures of central adiposity that are associated with adverse cardiovascular events, type 2 diabetes and cancer independent of body mass index (BMI). WC and WHR are highly heritable with multiple susceptibility loci identified to date. We assessed the association between SNPs and BMI-adjusted WC and WHR and unadjusted WC in up to 57 412 individuals of European descent from 22 cohorts collaborating with the NHLBI's Candidate Gene Association Resource (CARe) project. The study population consisted of women and men aged 20-80 years. Study participants were genotyped using the ITMAT/Broad/CARE array, which includes ∼50 000 cosmopolitan tagged SNPs across ∼2100 cardiovascular-related genes. Each trait was modeled as a function of age, study site and principal components to control for population stratification, and we conducted a fixed-effects meta-analysis. No new loci for WC were observed. For WHR analyses, three novel loci were significantly associated (P < 2.4 × 10(-6)). Previously unreported rs2811337-G near TMCC1 was associated with increased WHR (ß ± SE, 0.048 ± 0.008, P = 7.7 × 10(-9)) as was rs7302703-G in HOXC10 (ß = 0.044 ± 0.008, P = 2.9 × 10(-7)) and rs936108-C in PEMT (ß = 0.035 ± 0.007, P = 1.9 × 10(-6)). Sex-stratified analyses revealed two additional novel signals among females only, rs12076073-A in SHC1 (ß = 0.10 ± 0.02, P = 1.9 × 10(-6)) and rs1037575-A in ATBDB4 (ß = 0.046 ± 0.01, P = 2.2 × 10(-6)), supporting an already established sexual dimorphism of central adiposity-related genetic variants. Functional analysis using ENCODE and eQTL databases revealed that several of these loci are in regulatory regions or regions with differential expression in adipose tissue.


Asunto(s)
Circunferencia de la Cintura/genética , Adiposidad , Adulto , Anciano , Anciano de 80 o más Años , Índice de Masa Corporal , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Relación Cintura-Cadera , Población Blanca , Adulto Joven
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda