Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Nat Methods ; 20(2): 193-204, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36543939

RESUMEN

Progress in mass spectrometry lipidomics has led to a rapid proliferation of studies across biology and biomedicine. These generate extremely large raw datasets requiring sophisticated solutions to support automated data processing. To address this, numerous software tools have been developed and tailored for specific tasks. However, for researchers, deciding which approach best suits their application relies on ad hoc testing, which is inefficient and time consuming. Here we first review the data processing pipeline, summarizing the scope of available tools. Next, to support researchers, LIPID MAPS provides an interactive online portal listing open-access tools with a graphical user interface. This guides users towards appropriate solutions within major areas in data processing, including (1) lipid-oriented databases, (2) mass spectrometry data repositories, (3) analysis of targeted lipidomics datasets, (4) lipid identification and (5) quantification from untargeted lipidomics datasets, (6) statistical analysis and visualization, and (7) data integration solutions. Detailed descriptions of functions and requirements are provided to guide customized data analysis workflows.


Asunto(s)
Biología Computacional , Lipidómica , Biología Computacional/métodos , Programas Informáticos , Informática , Lípidos/química
2.
Nucleic Acids Res ; 52(D1): D1677-D1682, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37855672

RESUMEN

LIPID MAPS (LIPID Metabolites and Pathways Strategy), www.lipidmaps.org, provides a systematic and standardized approach to organizing lipid structural and biochemical data. Founded 20 years ago, the LIPID MAPS nomenclature and classification has become the accepted community standard. LIPID MAPS provides databases for cataloging and identifying lipids at varying levels of characterization in addition to numerous software tools and educational resources, and became an ELIXIR-UK data resource in 2020. This paper describes the expansion of existing databases in LIPID MAPS, including richer metadata with literature provenance, taxonomic data and improved interoperability to facilitate FAIR compliance. A joint project funded by ELIXIR-UK, in collaboration with WikiPathways, curates and hosts pathway data, and annotates lipids in the context of their biochemical pathways. Updated features of the search infrastructure are described along with implementation of programmatic access via API and SPARQL. New lipid-specific databases have been developed and provision of lipidomics tools to the community has been updated. Training and engagement have been expanded with webinars, podcasts and an online training school.


Asunto(s)
Bases de Datos Factuales , Lipidómica , Lípidos , Metabolismo de los Lípidos , Lípidos/química , Programas Informáticos
3.
J Immunol ; 211(2): 274-286, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37272871

RESUMEN

Cytokines that signal via STAT1 and STAT3 transcription factors instruct decisions affecting tissue homeostasis, antimicrobial host defense, and inflammation-induced tissue injury. To understand the coordination of these activities, we applied RNA sequencing, chromatin immunoprecipitation sequencing, and assay for transposase-accessible chromatin with high-throughput sequencing to identify the transcriptional output of STAT1 and STAT3 in peritoneal tissues from mice during acute resolving inflammation and inflammation primed to drive fibrosis. Bioinformatics focused on the transcriptional signature of the immunomodulatory cytokine IL-6 in both settings and examined how profibrotic IFN-γ-secreting CD4+ T cells altered the interpretation of STAT1 and STAT3 cytokine cues. In resolving inflammation, STAT1 and STAT3 cooperated to drive stromal gene expression affecting antimicrobial immunity and tissue homeostasis. The introduction of IFN-γ-secreting CD4+ T cells altered this transcriptional program and channeled STAT1 and STAT3 to a previously latent IFN-γ activation site motif in Alu-like elements. STAT1 and STAT3 binding to this conserved sequence revealed evidence of reciprocal cross-regulation and gene signatures relevant to pathophysiology. Thus, we propose that effector T cells retune the transcriptional output of IL-6 by shaping a regulatory interplay between STAT1 and STAT3 in inflammation.


Asunto(s)
Interleucina-6 , Células TH1 , Animales , Ratones , Citocinas/metabolismo , Inflamación/metabolismo , Interleucina-6/metabolismo , Retroelementos , Factores de Transcripción STAT/metabolismo , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT3/metabolismo , Células TH1/metabolismo
4.
Nature ; 575(7784): 693-698, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31634899

RESUMEN

Ferroptosis is an iron-dependent form of necrotic cell death marked by oxidative damage to phospholipids1,2. To date, ferroptosis has been thought to be controlled only by the phospholipid hydroperoxide-reducing enzyme glutathione peroxidase 4 (GPX4)3,4 and radical-trapping antioxidants5,6. However, elucidation of the factors that underlie the sensitivity of a given cell type to ferroptosis7 is crucial to understand the pathophysiological role of ferroptosis and how it may be exploited for the treatment of cancer. Although metabolic constraints8 and phospholipid composition9,10 contribute to ferroptosis sensitivity, no cell-autonomous mechanisms have been identified that account for the resistance of cells to ferroptosis. Here we used an expression cloning approach to identify genes in human cancer cells that are able to complement the loss of GPX4. We found that the flavoprotein apoptosis-inducing factor mitochondria-associated 2 (AIFM2) is a previously unrecognized anti-ferroptotic gene. AIFM2, which we renamed ferroptosis suppressor protein 1 (FSP1) and which was initially described as a pro-apoptotic gene11, confers protection against ferroptosis elicited by GPX4 deletion. We further demonstrate that the suppression of ferroptosis by FSP1 is mediated by ubiquinone (also known as coenzyme Q10, CoQ10): the reduced form, ubiquinol, traps lipid peroxyl radicals that mediate lipid peroxidation, whereas FSP1 catalyses the regeneration of CoQ10 using NAD(P)H. Pharmacological targeting of FSP1 strongly synergizes with GPX4 inhibitors to trigger ferroptosis in a number of cancer entities. In conclusion, the FSP1-CoQ10-NAD(P)H pathway exists as a stand-alone parallel system, which co-operates with GPX4 and glutathione to suppress phospholipid peroxidation and ferroptosis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Ferroptosis/genética , Glutatión/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Peroxidación de Lípido/genética , Ratones , Proteínas Mitocondriales/genética , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
5.
Genes Dev ; 31(20): 2067-2084, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29138276

RESUMEN

There is limited knowledge about the metabolic reprogramming induced by cancer therapies and how this contributes to therapeutic resistance. Here we show that although inhibition of PI3K-AKT-mTOR signaling markedly decreased glycolysis and restrained tumor growth, these signaling and metabolic restrictions triggered autophagy, which supplied the metabolites required for the maintenance of mitochondrial respiration and redox homeostasis. Specifically, we found that survival of cancer cells was critically dependent on phospholipase A2 (PLA2) to mobilize lysophospholipids and free fatty acids to sustain fatty acid oxidation and oxidative phosphorylation. Consistent with this, we observed significantly increased lipid droplets, with subsequent mobilization to mitochondria. These changes were abrogated in cells deficient for the essential autophagy gene ATG5 Accordingly, inhibition of PLA2 significantly decreased lipid droplets, decreased oxidative phosphorylation, and increased apoptosis. Together, these results describe how treatment-induced autophagy provides nutrients for cancer cell survival and identifies novel cotreatment strategies to override this survival advantage.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Apoptosis , Autofagia , Benzamidas/farmacología , Línea Celular Tumoral , Respiración de la Célula/efectos de los fármacos , Supervivencia Celular , Compuestos Heterocíclicos con 3 Anillos/farmacología , Humanos , Gotas Lipídicas/metabolismo , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neoplasias/enzimología , Neoplasias/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Fosfolipasa A2/farmacología , Fosfolípidos/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pirimidinas/farmacología , Células Tumorales Cultivadas
6.
J Lipid Res ; 65(1): 100484, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38103786

RESUMEN

Aminophospholipids (aPL) such as phosphatidylserine are essential for supporting the activity of coagulation factors, circulating platelets, and blood cells. Phosphatidylthreonine (PT) is an aminophospholipid previously reported in eukaryotic parasites and animal cell cultures, but not yet in human tissues. Here, we evaluated whether PT is present in blood cells and characterized its ability to support coagulation. Several PT molecular species were detected in human blood, washed platelets, extracellular vesicles, and isolated leukocytes from healthy volunteers using liquid chromatography-tandem mass spectrometry. The ability of PT to support coagulation was demonstrated in vitro using biochemical and biophysical assays. In liposomes, PT supported prothrombinase activity in the presence and absence of phosphatidylserine. PT nanodiscs strongly bound FVa and lactadherin (nM affinity) but poorly bound prothrombin and FX, suggesting that PT supports prothrombinase through recruitment of FVa. PT liposomes bearing tissue factor poorly generated thrombin in platelet poor plasma, indicating that PT poorly supports extrinsic tenase activity. On platelet activation, PT is externalized and partially metabolized. Last, PT was significantly higher in platelets and extracellular vesicle from patients with coronary artery disease than in healthy controls. In summary, PT is present in human blood, binds FVa and lactadherin, supports coagulation in vitro through FVa binding, and is elevated in atherosclerotic vascular disease. Our studies reveal a new phospholipid subclass, that contributes to the procoagulant membrane, and may support thrombosis in patients at elevated risk.


Asunto(s)
Enfermedad de la Arteria Coronaria , Glicerofosfolípidos , Treonina/análogos & derivados , Tromboplastina , Animales , Humanos , Tromboplastina/metabolismo , Fosfatidilserinas/metabolismo , Liposomas/metabolismo , Plaquetas/metabolismo , Trombina/metabolismo
7.
EMBO J ; 39(14): e103454, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32484988

RESUMEN

The alarm cytokine interleukin-1ß (IL-1ß) is a potent activator of the inflammatory cascade following pathogen recognition. IL-1ß production typically requires two signals: first, priming by recognition of pathogen-associated molecular patterns leads to the production of immature pro-IL-1ß; subsequently, inflammasome activation by a secondary signal allows cleavage and maturation of IL-1ß from its pro-form. However, despite the important role of IL-1ß in controlling local and systemic inflammation, its overall regulation is still not fully understood. Here we demonstrate that peritoneal tissue-resident macrophages use an active inhibitory pathway, to suppress IL-1ß processing, which can otherwise occur in the absence of a second signal. Programming by the transcription factor Gata6 controls the expression of prostacyclin synthase, which is required for prostacyclin production after lipopolysaccharide stimulation and optimal induction of IL-10. In the absence of secondary signal, IL-10 potently inhibits IL-1ß processing, providing a previously unrecognized control of IL-1ß in tissue-resident macrophages.


Asunto(s)
Epoprostenol/inmunología , Interleucina-10/inmunología , Interleucina-1beta/inmunología , Macrófagos Peritoneales/inmunología , Animales , Epoprostenol/genética , Factor de Transcripción GATA6/genética , Factor de Transcripción GATA6/inmunología , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Interleucina-10/genética , Interleucina-1beta/genética , Macrófagos Peritoneales/patología , Ratones , Ratones Transgénicos
8.
Clin Exp Immunol ; 216(3): 293-306, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38430552

RESUMEN

Sepsis is characterized by a dysfunctional host response to infection culminating in life-threatening organ failure that requires complex patient management and rapid intervention. Timely diagnosis of the underlying cause of sepsis is crucial, and identifying those at risk of complications and death is imperative for triaging treatment and resource allocation. Here, we explored the potential of explainable machine learning models to predict mortality and causative pathogen in sepsis patients. By using a modelling pipeline employing multiple feature selection algorithms, we demonstrate the feasibility of identifying integrative patterns from clinical parameters, plasma biomarkers, and extensive phenotyping of blood immune cells. While no single variable had sufficient predictive power, models that combined five and more features showed a macro area under the curve (AUC) of 0.85 to predict 90-day mortality after sepsis diagnosis, and a macro AUC of 0.86 to discriminate between Gram-positive and Gram-negative bacterial infections. Parameters associated with the cellular immune response contributed the most to models predictive of 90-day mortality, most notably, the proportion of T cells among PBMCs, together with expression of CXCR3 by CD4+ T cells and CD25 by mucosal-associated invariant T (MAIT) cells. Frequencies of Vδ2+ γδ T cells had the most profound impact on the prediction of Gram-negative infections, alongside other T-cell-related variables and total neutrophil count. Overall, our findings highlight the added value of measuring the proportion and activation patterns of conventional and unconventional T cells in the blood of sepsis patients in combination with other immunological, biochemical, and clinical parameters.


Asunto(s)
Sepsis , Humanos , Sepsis/inmunología , Sepsis/microbiología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Biomarcadores/sangre , Receptores CXCR3/metabolismo , Aprendizaje Automático , Subunidad alfa del Receptor de Interleucina-2/sangre , Subunidad alfa del Receptor de Interleucina-2/inmunología , Inmunidad Celular , Linfocitos T CD4-Positivos/inmunología , Linfocitos T/inmunología , Pronóstico , Infecciones por Bacterias Gramnegativas/inmunología
9.
Metabolomics ; 20(1): 15, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267595

RESUMEN

INTRODUCTION: Lipids are key compounds in the study of metabolism and are increasingly studied in biology projects. It is a very broad family that encompasses many compounds, and the name of the same compound may vary depending on the community where they are studied. OBJECTIVES: In addition, their structures are varied and complex, which complicates their analysis. Indeed, the structural resolution does not always allow a complete level of annotation so the actual compound analysed will vary from study to study and should be clearly stated. For all these reasons the identification and naming of lipids is complicated and very variable from one study to another, it needs to be harmonized. METHODS & RESULTS: In this position paper we will present and discuss the different way to name lipids (with chemoinformatic and semantic identifiers) and their importance to share lipidomic results. CONCLUSION: Homogenising this identification and adopting the same rules is essential to be able to share data within the community and to map data on functional networks.


Asunto(s)
Lipidómica , Metabolómica , Lípidos
10.
Arterioscler Thromb Vasc Biol ; 43(9): 1700-1712, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37409530

RESUMEN

BACKGROUND: Platelets and neutrophils are the first blood cells accumulating at sites of arterial thrombus formation, and both cell types contribute to the pathology of thrombotic events. We aimed to identify key interaction mechanisms between these cells using microfluidic approaches. METHODS: Whole-blood perfusion was performed over a collagen surface at arterial shear rate. Platelet and leukocyte (in majority neutrophil) activation were microscopically visualized using fluorescent markers. The contributions of platelet-adhesive receptors (integrin, P-selectin, CD40L) and chemokines were studied by using inhibitors or antibodies and using blood from patients with GT (Glanzmann thrombasthenia) lacking platelet-expressed αIIbß3. RESULTS: We observed (1) an unknown role of activated platelet integrin αIIbß3 preventing leukocyte adhesion, which was overcome by short-term flow disturbance provoking massive adhesion; (2) that platelet-expressed CD40L controls the crawling pattern and thrombus fidelity of the cells on a thrombus; (3) that continued secretion of platelet substances promotes activation of identified neutrophils, as assessed by (fMLP [N-formylmethionyl-leucyl-phenylalanine, a potent chemotactic agent and leukocyte activator] induced) [Ca2+]i rises and antigen expression; (4) and that platelet-released chemokines activate the adhered cells in the order of CXCL7>CCL5>CXCL4. Furthermore, postsilencing of the platelets in a thrombus suppressed the leukocyte activation. However, the leukocytes on thrombi did no more than limitedly form neutrophil extracellular traps, unless stimulated with phorbol ester or lipopolysaccharide. CONCLUSIONS: Together, these findings reveal a multifaceted regulation of adhesion and activation of neutrophils by platelets in a thrombus, with a balanced role of several platelet-adhesive receptors and a promoting role of platelet-released substances. This multivalent nature of neutrophil-thrombus interactions offers novel prospects for pharmacological intervention.


Asunto(s)
Arterias , Plaquetas , Quimiocinas , Activación Neutrófila , Neutrófilos , Trombosis , Plaquetas/inmunología , Plaquetas/metabolismo , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Quimiocinas/metabolismo , Trombosis/inmunología , Ligando de CD40 , Neutrófilos/inmunología , Neutrófilos/metabolismo , Adhesión Celular , Humanos
11.
Immunity ; 40(1): 40-50, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24412616

RESUMEN

Fibrosis in response to tissue damage or persistent inflammation is a pathological hallmark of many chronic degenerative diseases. By using a model of acute peritoneal inflammation, we have examined how repeated inflammatory activation promotes fibrotic tissue injury. In this context, fibrosis was strictly dependent on interleukin-6 (IL-6). Repeat inflammation induced IL-6-mediated T helper 1 (Th1) cell effector commitment and the emergence of STAT1 (signal transducer and activator of transcription-1) activity within the peritoneal membrane. Fibrosis was not observed in mice lacking interferon-γ (IFN-γ), STAT1, or RAG-1. Here, IFN-γ and STAT1 signaling disrupted the turnover of extracellular matrix by metalloproteases. Whereas IL-6-deficient mice resisted fibrosis, transfer of polarized Th1 cells or inhibition of MMP activity reversed this outcome. Thus, IL-6 causes compromised tissue repair by shifting acute inflammation into a more chronic profibrotic state through induction of Th1 cell responses as a consequence of recurrent inflammation.


Asunto(s)
Interleucina-6/metabolismo , Peritoneo/patología , Peritonitis/genética , Peritonitis/patología , Células TH1/inmunología , Enfermedad Aguda , Traslado Adoptivo , Animales , Células Cultivadas , Enfermedad Crónica , Modelos Animales de Enfermedad , Matriz Extracelular/inmunología , Retroalimentación Fisiológica , Fibrosis , Humanos , Interferón gamma/genética , Interferón gamma/metabolismo , Interleucina-6/genética , Interleucina-6/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Transducción de Señal , Células TH1/trasplante
12.
J Immunol ; 207(10): 2561-2569, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34635585

RESUMEN

PGs are important proinflammatory lipid mediators, the significance of which is highlighted by the widespread and efficacious use of nonsteroidal anti-inflammatory drugs in the treatment of inflammation. 4-Octyl itaconate (4-OI), a derivative of the Krebs cycle-derived metabolite itaconate, has recently garnered much interest as an anti-inflammatory agent. In this article, we show that 4-OI limits PG production in murine macrophages stimulated with the TLR1/2 ligand Pam3CSK4. This decrease in PG secretion is due to a robust suppression of cyclooxygenase 2 (COX2) expression by 4-OI, with both mRNA and protein levels decreased. Dimethyl fumarate, a fumarate derivative used in the treatment of multiple sclerosis, with properties similar to itaconate, replicated the phenotype observed with 4-OI. We also demonstrate that the decrease in COX2 expression and inhibition of downstream PG production occurs in an NRF2-independent manner. Our findings provide a new insight into the potential of 4-OI as an anti-inflammatory agent and also identifies a novel anti-inflammatory function of dimethyl fumarate.


Asunto(s)
Antiinflamatorios/farmacología , Dimetilfumarato/farmacología , Macrófagos/efectos de los fármacos , Prostaglandinas/metabolismo , Succinatos/farmacología , Animales , Ciclooxigenasa 2/biosíntesis , Humanos , Macrófagos/metabolismo , Ratones
13.
J Immunol ; 207(10): 2551-2560, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34635586

RESUMEN

The protozoan parasite Trypanosoma brucei is the causative agent of the neglected tropical disease human African trypanosomiasis, otherwise known as sleeping sickness. Trypanosomes have evolved many immune-evasion mechanisms to facilitate their own survival, as well as prolonging host survival to ensure completion of the parasitic life cycle. A key feature of the bloodstream form of T. brucei is the secretion of aromatic keto acids, which are metabolized from tryptophan. In this study, we describe an immunomodulatory role for one of these keto acids, indole-3-pyruvate (I3P). We demonstrate that I3P inhibits the production of PGs in activated macrophages. We also show that, despite the reduction in downstream PGs, I3P augments the expression of cyclooxygenase (COX2). This increase in COX2 expression is mediated in part via inhibition of PGs relieving a negative-feedback loop on COX2. Activation of the aryl hydrocarbon receptor also participates in this effect. However, the increase in COX2 expression is of little functionality, as we also provide evidence to suggest that I3P targets COX activity. This study therefore details an evasion strategy by which a trypanosome-secreted metabolite potently inhibits macrophage-derived PGs, which might promote host and trypanosome survival.


Asunto(s)
Ciclooxigenasa 2/metabolismo , Indoles/metabolismo , Macrófagos/inmunología , Prostaglandinas/metabolismo , Tripanosomiasis Africana/inmunología , Animales , Humanos , Evasión Inmune/inmunología , Indoles/inmunología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Prostaglandinas/inmunología , Trypanosoma brucei brucei/inmunología , Trypanosoma brucei brucei/metabolismo , Tripanosomiasis Africana/metabolismo
14.
J Lipid Res ; 63(6): 100208, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35436499

RESUMEN

The lipid envelope of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an essential component of the virus; however, its molecular composition is undetermined. Addressing this knowledge gap could support the design of antiviral agents as well as further our understanding of viral-host protein interactions, infectivity, pathogenicity, and innate immune system clearance. Lipidomics revealed that the virus envelope comprised mainly phospholipids (PLs), with some cholesterol and sphingolipids, and with cholesterol/phospholipid ratio similar to lysosomes. Unlike cellular membranes, procoagulant amino-PLs were present on the external side of the viral envelope at levels exceeding those on activated platelets. Accordingly, virions directly promoted blood coagulation. To investigate whether these differences could enable selective targeting of the viral envelope in vivo, we tested whether oral rinses containing lipid-disrupting chemicals could reduce infectivity. Products containing PL-disrupting surfactants (such as cetylpyridinium chloride) met European virucidal standards in vitro; however, components that altered the critical micelle concentration reduced efficacy, and products containing essential oils, povidone-iodine, or chlorhexidine were ineffective. This result was recapitulated in vivo, where a 30-s oral rinse with cetylpyridinium chloride mouthwash eliminated live virus in the oral cavity of patients with coronavirus disease 19 for at least 1 h, whereas povidone-iodine and saline mouthwashes were ineffective. We conclude that the SARS-CoV-2 lipid envelope i) is distinct from the host plasma membrane, which may enable design of selective antiviral approaches; ii) contains exposed phosphatidylethanolamine and phosphatidylserine, which may influence thrombosis, pathogenicity, and inflammation; and iii) can be selectively targeted in vivo by specific oral rinses.


Asunto(s)
COVID-19 , Antisépticos Bucales , Antivirales , Cetilpiridinio , Humanos , Lípidos , Antisépticos Bucales/farmacología , Povidona Yodada , ARN Viral , SARS-CoV-2
15.
Bioinformatics ; 37(10): 1478-1479, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-33027502

RESUMEN

SUMMARY: We present LipidFinder 2.0, incorporating four new modules that apply artefact filters, remove lipid and contaminant stacks, in-source fragments and salt clusters, and a new isotope deletion method which is significantly more sensitive than available open-access alternatives. We also incorporate a novel false discovery rate method, utilizing a target-decoy strategy, which allows users to assess data quality. A renewed lipid profiling method is introduced which searches three different databases from LIPID MAPS and returns bulk lipid structures only, and a lipid category scatter plot with color blind friendly pallet. An API interface with XCMS Online is made available on LipidFinder's online version. We show using real data that LipidFinder 2.0 provides a significant improvement over non-lipid metabolite filtering and lipid profiling, compared to available tools. AVAILABILITY AND IMPLEMENTATION: LipidFinder 2.0 is freely available at https://github.com/ODonnell-Lipidomics/LipidFinder and http://lipidmaps.org/resources/tools/lipidfinder. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Lipidómica , Programas Informáticos , Bases de Datos Factuales , Lípidos
17.
Biochem Soc Trans ; 50(1): 1-11, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35225335

RESUMEN

The Lands Pathway is a fundamental biochemical process named for its discovery by William EM Lands and revealed in a series of seminal papers published in the Journal of Biological Chemistry between 1958-65. It describes the selective placement in phospholipids of acyl chains, by phospholipid acyltransferases. This pathway has formed a core component of our knowledge of phospholipid and also diglyceride metabolism in mammalian tissues for over 60 years now. Our understanding of how the Lands pathways are enzymatically mediated via large families of related gene products that display both substrate and tissue specificity has grown exponentially since. Recent studies building on this are starting to reveal key roles for the Lands pathway in specific scenarios, in particular inflammation, immunity and inflammation. This review will cover the Lands cycle from historical perspectives first, then present new information on how this important cycle forms a central regulatory node connecting fatty acyl and phospholipid metabolism and how its altered regulation may present new opportunities for therapeutic intervention in human disease.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa , Fosfolípidos , 1-Acilglicerofosfocolina O-Aciltransferasa/genética , 1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , Animales , Humanos , Inflamación , Metabolismo de los Lípidos , Mamíferos/metabolismo , Fosfolípidos/metabolismo
18.
Proc Natl Acad Sci U S A ; 116(16): 8038-8047, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30944221

RESUMEN

Abdominal aortic aneurysm (AAA) is an inflammatory vascular disease with high mortality and limited treatment options. How blood lipids regulate AAA development is unknown. Here lipidomics and genetic models demonstrate a central role for procoagulant enzymatically oxidized phospholipids (eoxPL) in regulating AAA. Specifically, through activating coagulation, eoxPL either promoted or inhibited AAA depending on tissue localization. Ang II administration to ApoE-/- mice increased intravascular coagulation during AAA development. Lipidomics revealed large numbers of eoxPL formed within mouse and human AAA lesions. Deletion of eoxPL-generating enzymes (Alox12 or Alox15) or administration of the factor Xa inhibitor rivaroxaban significantly reduced AAA. Alox-deficient mice displayed constitutively dysregulated hemostasis, including a consumptive coagulopathy, characterized by compensatory increase in prothrombotic aminophospholipids (aPL) in circulating cell membranes. Intravenously administered procoagulant PL caused clotting factor activation and depletion, induced a bleeding defect, and significantly reduced AAA development. These data suggest that Alox deletion reduces AAA through diverting coagulation away from the vessel wall due to eoxPL deficiency, instead activating clotting factor consumption and depletion in the circulation. In mouse whole blood, ∼44 eoxPL molecular species formed within minutes of clot initiation. These were significantly elevated with ApoE-/- deletion, and many were absent in Alox-/- mice, identifying specific eoxPL that modulate AAA. Correlation networks demonstrated eoxPL belonged to subfamilies defined by oxylipin composition. Thus, procoagulant PL regulate AAA development through complex interactions with clotting factors. Modulation of the delicate balance between bleeding and thrombosis within either the vessel wall or circulation was revealed that can either drive or prevent disease development.


Asunto(s)
Aorta Abdominal/fisiopatología , Aneurisma de la Aorta Abdominal , Fosfolípidos , Angiotensinas/metabolismo , Animales , Aneurisma de la Aorta Abdominal/genética , Aneurisma de la Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/fisiopatología , Factores de Coagulación Sanguínea/genética , Factores de Coagulación Sanguínea/metabolismo , Modelos Animales de Enfermedad , Femenino , Lipooxigenasa/genética , Lipooxigenasa/metabolismo , Masculino , Ratones , Ratones Noqueados para ApoE , Fosfolípidos/genética , Fosfolípidos/metabolismo
19.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36077303

RESUMEN

Glutathione peroxidase 4 (Gpx4) and arachidonic acid 15 lipoxygenase (Alox15) are counterplayers in oxidative lipid metabolism and both enzymes have been implicated in spermatogenesis. However, the roles of the two proteins in acrosomal exocytosis have not been explored in detail. Here we characterized Gpx4 distribution in mouse sperm and detected the enzyme not only in the midpiece of the resting sperm but also at the anterior region of the head, where the acrosome is localized. During sperm capacitation, Gpx4 translocated to the post-acrosomal compartment. Sperm from Gpx4+/Sec46Ala mice heterozygously expressing a catalytically silent enzyme displayed an increased expression of phosphotyrosyl proteins, impaired acrosomal exocytosis after in vitro capacitation and were not suitable for in vitro fertilization. Alox15-deficient sperm showed normal acrosome reactions but when crossed into a Gpx4-deficient background spontaneous acrosomal exocytosis was observed during capacitation and these cells were even less suitable for in vitro fertilization. Taken together, our data indicate that heterozygous expression of a catalytically silent Gpx4 variant impairs acrosomal exocytosis and in vitro fertilization. Alox15 deficiency hardly impacted the acrosome reaction but when crossed into the Gpx4-deficient background spontaneous acrosomal exocytosis was induced. The detailed molecular mechanisms for the observed effects may be related to the compromised redox homeostasis.


Asunto(s)
Reacción Acrosómica , Araquidonato 15-Lipooxigenasa , Acrosoma/metabolismo , Animales , Araquidonato 15-Lipooxigenasa/genética , Araquidonato 15-Lipooxigenasa/metabolismo , Exocitosis , Fertilización In Vitro , Masculino , Ratones , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Semen , Espermatozoides/metabolismo
20.
J Lipid Res ; 62: 100094, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34171322

RESUMEN

A complex assembly of lipids including fatty acids, cholesterol, and ceramides is vital to the integrity of the mammalian epidermal barrier. The formation of this barrier requires oxidation of the substrate fatty acid, linoleic acid (LA), which is initiated by the enzyme 12R-lipoxygenase (LOX). In the epidermis, unoxidized LA is primarily found in long-chain acylceramides termed esterified omega-hydroxy sphingosine (EOS)/phytosphingosine/hydroxysphingosine (collectively EOx). The precise structure and localization of LOX-oxidized EOx in the human epidermis is unknown, as is their regulation in diseases such as psoriasis, one of the most common inflammatory diseases affecting the skin. Here, using precursor LC/MS/MS, we characterized multiple intermediates of EOx, including 9-HODE, 9,10-epoxy-13-HOME, and 9,10,13-TriHOME, in healthy human epidermis likely to be formed via the epidermal LOX pathways. The top layers of the skin contained more LA, 9-HODE, and 9,10,13-TriHOME EOSs, whereas 9,10-epoxy-13-HOME EOS was more prevalent deeper in the stratum corneum. In psoriatic lesions, levels of native EOx and free HODEs and HOMEs were significantly elevated, whereas oxidized species were generally reduced. A transcriptional network analysis of human psoriatic lesions identified significantly elevated expression of the entire biosynthetic/metabolic pathway for oxygenated ceramides, suggesting a regulatory function for EOx lipids in reconstituting epidermal integrity. The role of these new lipids in progression or resolution of psoriasis is currently unknown. We also discovered the central coordinated role of the zinc finger protein transcription factor, ZIC1, in driving the phenotype of this disease. In summary, long-chain oxygenated ceramide metabolism is dysregulated at the lipidomic level in psoriasis, likely driven by the transcriptional differences also observed, and we identified ZIC1 as a potential regulatory target for future therapeutic interventions.


Asunto(s)
Ceramidas/biosíntesis , Ácido Linoleico/biosíntesis , Lipidómica , Psoriasis/metabolismo , Ceramidas/química , Ceramidas/genética , Humanos , Ácido Linoleico/química , Ácido Linoleico/genética , Estructura Molecular , Psoriasis/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda