RESUMEN
Antimicrobial resistance (AMR) in Clostridioides difficile remains a significant threat to global healthcare systems, not just for the treatment of C. difficile infection (CDI), but as a reservoir of AMR genes that could be potentially transferred to other pathogens. The mechanisms of resistance for several antimicrobials such as metronidazole and MLSB-class agents are only beginning to be elucidated, and increasingly, there is evidence that previously unconsidered mechanisms such as plasmid-mediated resistance may play an important role in AMR in this bacterium. In this review, the genetics of AMR in C. difficile will be described, along with a discussion of the factors contributing to the difficulty in clearly determining the true burden of AMR in C. difficile and how it affects the treatment of CDI.
Asunto(s)
Antibacterianos/farmacología , Clostridioides difficile/efectos de los fármacos , Infecciones por Clostridium/microbiología , Farmacorresistencia Bacteriana , Animales , Clostridioides difficile/clasificación , Clostridioides difficile/genética , Clostridioides difficile/aislamiento & purificación , Infecciones por Clostridium/tratamiento farmacológico , Humanos , Pruebas de Sensibilidad MicrobianaRESUMEN
Clostridioides difficile infection (CDI) remains a significant public health threat globally. New interventions to treat CDI rely on an understanding of the evolution and epidemiology of circulating strains. Here we provide longitudinal genomic data on strain diversity, transmission dynamics and antimicrobial resistance (AMR) of C. difficile ribotypes (RTs) 014/020 (n=169), 002 (n=77) and 056 (n=36), the three most prominent C. difficile strains causing CDI in Australia. Genome scrutiny showed that AMR was uncommon in these lineages, with resistance-conferring alleles present in only 15/169 RT014/020 strains (8.9â%), 1/36 RT056 strains (2.78â%) and none of 77 RT002 strains. Notably, ~90â% of strains were resistant to MLSB agents in vitro, but only ~5.9â% harboured known resistance alleles, highlighting an incongruence between AMR genotype and phenotype. Core genome analyses revealed all three RTs contained genetically heterogeneous strain populations with limited evidence of clonal transmission between CDI cases. The average number of pairwise core genome SNP (cgSNP) differences within each RT group ranged from 23.3 (RT056, ST34, n=36) to 115.6 (RT002, ST8, n=77) and 315.9 (RT014/020, STs 2, 13, 14, 49, n=169). Just 19 clonal groups (encompassing 40 isolates), defined as isolates differing by ≤2 cgSNPs, were identified across all three RTs (RT014/020, n=14; RT002, n=3; RT056, n=2). Of these clonal groups, 63â% (12/19) comprised isolates from the same Australian State and 37â% (7/19) comprised isolates from different States. The low number of plausible transmission events found for these major RTs (and previously documented populations in animal and environmental sources/reservoirs) points to widespread and persistent community sources of diverse C. difficile strains as opposed to ongoing nationwide healthcare outbreaks dominated by a single clone. Together, these data provide new insights into the evolution of major lineages causing CDI in Australia and highlight the urgent need for enhanced surveillance, and for public health interventions to move beyond the healthcare setting and into a One Health paradigm to effectively combat this complex pathogen.
Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Filogenia , Ribotipificación , Clostridioides difficile/genética , Clostridioides difficile/clasificación , Clostridioides difficile/efectos de los fármacos , Clostridioides difficile/aislamiento & purificación , Australia/epidemiología , Humanos , Infecciones por Clostridium/microbiología , Infecciones por Clostridium/epidemiología , Infecciones por Clostridium/transmisión , Genoma Bacteriano , Farmacorresistencia Bacteriana/genética , Antibacterianos/farmacología , Polimorfismo de Nucleótido Simple , GenotipoRESUMEN
Clostridioides difficile infection (CDI) is the leading cause of life-threatening health care-related gastrointestinal illness worldwide. Phylogenetically appropriate closed reference genomes are essential for studies of C. difficile transmission and evolution. Here, we provide high-quality complete hybrid genome assemblies for the three most prevalent C. difficile strains causing CDI in Australia.