Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Opt Express ; 31(21): 33850-33872, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37859156

RESUMEN

Future satellite-to-ground optical communication systems will benefit from accurate forecasts of atmospheric optical turbulence; namely for site selection, for the routing and the operation of optical links, and for the design of optical communication terminals. This work presents a numerical approach based on the Weather Research and Forecasting software that enables continuous forecast of the refractive index structure parameter, C n2, vertical profiles. Two different C n2 models are presented and compared. One is based on monitoring the turbulent kinetic energy, while the other is a hybrid model using the Tatarskii equation to depict the free atmosphere region, and the Monin-Obukhov similarity theory for describing the boundary layer. The validity of both models is assessed by using thermosonde measurements from the Terrain-induced Rotor Experiment campaign, and from day and night measurements of the coherence length collected during a six-day campaign at Paranal observatory by a Shack-Hartmann Image Motion Monitor. The novelty of this work is the ability of the presented approach to continuously predict optical turbulence both during daytime and nighttime, and its validation with measurements in day and night conditions.

2.
Radio Sci ; 49(6): 371-388, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26430285

RESUMEN

The human body is an extremely challenging environment for the operation of wireless communications systems, not least because of the complex antenna-body electromagnetic interaction effects which can occur. This is further compounded by the impact of movement and the propagation characteristics of the local environment which all have an effect upon body centric communications channels. As the successful design of body area networks (BANs) and other types of body centric system is inextricably linked to a thorough understanding of these factors, the aim of this paper is to conduct a survey of the current state of the art in relation to propagation and channel models primarily for BANs but also considering other types of body centric communications. We initially discuss some of the standardization efforts performed by the Institute of Electrical and Electronics Engineers 802.15.6 task group before focusing on the two most popular types of technologies currently being considered for BANs, namely narrowband and Ultrawideband (UWB) communications. For narrowband communications the applicability of a generic path loss model is contended, before presenting some of the scenario specific models which have proven successful. The impacts of human body shadowing and small-scale fading are also presented alongside some of the most recent research into the Doppler and time dependencies of BANs. For UWB BAN communications, we again consider the path loss as well as empirical tap delay line models developed from a number of extensive channel measurement campaigns conducted by research institutions around the world. Ongoing efforts within collaborative projects such as Committee on Science and Technology Action IC1004 are also described. Finally, recent years have also seen significant developments in other areas of body centric communications such as off-body and body-to-body communications. We highlight some of the newest relevant research in these areas as well as discussing some of the advanced topics which are currently being addressed in the field of body centric communications.

3.
EURASIP J Wirel Commun Netw ; 2018(1): 164, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30008737

RESUMEN

This work presents an extension of the high-resolution RiMAX multipath estimation algorithm, enabling the analysis of frequency-dependent propagation parameters for ultra-wideband (UWB) channel modeling. Since RiMAX is a narrowband algorithm, it does not account for the frequency-dependency of the radio channel or the environment. As such, the impact of certain materials in which these systems operate can no longer be considered constant with respect to frequency, preventing an accurate estimation of multipath parameters for UWB communication. In order to track both the specular and dense multipath components (SMC and DMC) over frequency, an extension to the RiMAX algorithm was developed that can process UWB measurement data. The advantage of our approach is that geometrical propagation parameters do not appear or disappear from one sub-band onto the next. The UWB-RiMAX algorithm makes it possible to re-evaluate common radio channel parameters for DMC in the wideband scenario, and to extend the well-known deterministic propagation model comprising of SMC alone, towards a more hybrid model containing the stochastic contributions from the DMC's distributed diffuse scattering as well. Our algorithm was tested with synthetic radio channel models in an indoor environment, which show that our algorithm can match up to 99% of the SMC parameters according to the multipath component distance (MCD) metric and that the DMC reverberation time known from the theory of room electromagnetics can be estimated on average with an error margin of less than 2 ns throughout the UWB frequency band. We also present some preliminary results in an indoor environment, which indicate a strong presence of DMC and thus diffuse scattering. The DMC power represents up to 50% of the total measured power for the lower UWB frequencies and reduces to around 30% for the higher UWB frequencies.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda