Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
J Neurosci ; 43(28): 5172-5179, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37225436

RESUMEN

It is generally assumed that frequency selectivity varies along the cochlea. For example, at the base of the cochlea, which is a region sensitive to high-frequency sounds, the best frequency of a cochlear location increases toward the most basal end, that is, near the stapes. Response phases also vary along cochlear locations. At any given frequency, there is a decrease in phase lag toward the stapes. This tonotopic arrangement in the cochlea was originally described by Georg von Békésy in a seminal series of experiments on human cadavers and has been confirmed in more recent works on live laboratory animals. Nonetheless, our knowledge of tonotopy at the apex of the cochlea remains incomplete in animals with low-frequency hearing, which is relevant to human speech. The results of our experiments on guinea pig, gerbil, and chinchilla cochleas, regardless of the sex of the animal, show that responses to sound differ at locations across the apex in a pattern consistent with previous studies of the base of the cochlea.SIGNIFICANCE STATEMENT Tonotopy is an important property of the auditory system that has been shown to exist in many auditory centers. In fact, most auditory implants work on the assumption of its existence by assigning different frequencies to different stimulating electrodes based on their location. At the level of the basilar membrane in the cochlea, a tonotopic arrangement implies that high-frequency stimuli evoke largest displacements at the base, near the ossicles, and low-frequency sounds have their greatest effects at the apex. Although tonotopy has been confirmed at the base of the cochlea on live animals at the apex of the cochlea, however, it has been less studied. Here, we show that a tonotopic arrangement does exist at the apex of the cochlea.


Asunto(s)
Cóclea , Audición , Animales , Humanos , Cobayas , Cóclea/fisiología , Audición/fisiología , Sonido , Gerbillinae , Chinchilla
2.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34686590

RESUMEN

Mammalian hearing depends on an amplification process involving prestin, a voltage-sensitive motor protein that enables cochlear outer hair cells (OHCs) to change length and generate force. However, it has been questioned whether this prestin-based somatic electromotility can operate fast enough in vivo to amplify cochlear vibrations at the high frequencies that mammals hear. In this study, we measured sound-evoked vibrations from within the living mouse cochlea and found that the top and bottom of the OHCs move in opposite directions at frequencies exceeding 20 kHz, consistent with fast somatic length changes. These motions are physiologically vulnerable, depend on prestin, and dominate the cochlea's vibratory response to high-frequency sound. This dominance was observed despite mechanisms that clearly low-pass filter the in vivo electromotile response. Low-pass filtering therefore does not critically limit the OHC's ability to move the organ of Corti on a cycle-by-cycle basis. Our data argue that electromotility serves as the primary high-frequency amplifying mechanism within the mammalian cochlea.


Asunto(s)
Células Ciliadas Auditivas Externas/fisiología , Órgano Espiral/fisiología , Estimulación Acústica , Animales , Cóclea/fisiología , Electrofisiología , Femenino , Audición/fisiología , Masculino , Ratones , Ratones Endogámicos CBA , Ratones Mutantes , Modelos Biológicos , Proteínas Motoras Moleculares/deficiencia , Proteínas Motoras Moleculares/genética , Proteínas Motoras Moleculares/fisiología , Movimiento/fisiología , Dinámicas no Lineales , Sonido , Tomografía de Coherencia Óptica , Vibración
3.
Biophys J ; 121(15): 2940-2951, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35778839

RESUMEN

Sounds entering the mammalian ear produce waves that travel from the base to the apex of the cochlea. An electromechanical active process amplifies traveling wave motions and enables sound processing over a broad range of frequencies and intensities. The cochlear amplifier requires combining the global traveling wave with the local cellular processes that change along the length of the cochlea given the gradual changes in hair cell and supporting cell anatomy and physiology. Thus, we measured basilar membrane (BM) traveling waves in vivo along the apical turn of the mouse cochlea using volumetric optical coherence tomography and vibrometry. We found that there was a gradual reduction in key features of the active process toward the apex. For example, the gain decreased from 23 to 19 dB and tuning sharpness decreased from 2.5 to 1.4. Furthermore, we measured the frequency and intensity dependence of traveling wave properties. The phase velocity was larger than the group velocity, and both quantities gradually decrease from the base to the apex denoting a strong dispersion characteristic near the helicotrema. Moreover, we found that the spatial wavelength along the BM was highly level dependent in vivo, such that increasing the sound intensity from 30 to 90 dB sound pressure level increased the wavelength from 504 to 874 µm, a factor of 1.73. We hypothesize that this wavelength variation with sound intensity gives rise to an increase of the fluid-loaded mass on the BM and tunes its local resonance frequency. Together, these data demonstrate a strong interplay between the traveling wave propagation and amplification along the length of the cochlea.


Asunto(s)
Membrana Basilar , Cóclea , Animales , Membrana Basilar/fisiología , Cóclea/fisiología , Células Ciliadas Auditivas/fisiología , Mamíferos , Ratones , Sonido , Vibración
4.
J Neurophysiol ; 128(5): 1365-1373, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36259670

RESUMEN

The mammalian cochlea contains three rows of outer hair cells (OHCs) that amplify the basilar membrane traveling wave with high gain and exquisite tuning. The pattern of OHC loss caused by typical methods of producing hearing loss in animal models (noise, ototoxic exposure, or aging) is variable and not consistent along the length of the cochlea. Thus, it is difficult to use these approaches to understand how forces from multiple OHCs summate to create normal cochlear amplification. Here, we selectively removed the third row of OHCs and Deiters' cells in adult mice and measured cochlear amplification. In the mature cochlear epithelia, expression of the Wnt target gene Lgr5 is restricted to the third row of Deiters' cells, the supporting cells directly underneath the OHCs. Diphtheria toxin administration to Lgr5DTR-EGFP/+ mice selectively ablated the third row of Deiters' cells and the third row of OHCs. Basilar membrane vibration in vivo demonstrated disproportionately lower reduction in cochlear amplification by about 13.5 dB. On a linear scale, this means that the 33% reduction in OHC number led to a 79% reduction in gain. Thus, these experimental data describe the impact of reducing the force of cochlear amplification by a specific amount. Furthermore, these data argue that because OHC forces progressively and sequentially amplify the traveling wave as it travels to its peak, the loss of even a relatively small number of OHCs, when evenly distributed longitudinally, will cause a substantial reduction in cochlear amplification.NEW & NOTEWORTHY Normal cochlear physiology involves force production from three rows of outer hair cells to amplify and tune the traveling wave. Here, we used a genetic approach to target and ablate the third row of outer hair cells in the mouse cochlea and found it reduced cochlear amplification by 79%. This means that the loss of even a relatively small number of OHCs, when evenly distributed, causes a substantial reduction in cochlear amplification.


Asunto(s)
Células Ciliadas Vestibulares , Pérdida Auditiva , Ratones , Animales , Células Ciliadas Auditivas Externas/fisiología , Cóclea/metabolismo , Ruido , Mamíferos
5.
J Acoust Soc Am ; 152(4): 2227, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36319240

RESUMEN

The mammalian ear embeds a cellular amplifier that boosts sound-induced hydromechanical waves as they propagate along the cochlea. The operation of this amplifier is not fully understood and is difficult to disentangle experimentally. In the prevailing view, cochlear waves are amplified by the piezo-electric action of the outer hair cells (OHCs), whose cycle-by-cycle elongations and contractions inject power into the local motion of the basilar membrane (BM). Concomitant deformations of the opposing (or "top") side of the organ of Corti are assumed to play a minor role and are generally neglected. However, analysis of intracochlear motions obtained using optical coherence tomography calls this prevailing view into question. In particular, the analysis suggests that (i) the net local power transfer from the OHCs to the BM is either negative or highly inefficient; and (ii) vibration of the top side of the organ of Corti plays a primary role in traveling-wave amplification. A phenomenological model derived from these observations manifests realistic cochlear responses and suggests that amplification arises almost entirely from OHC-induced deformations of the top side of the organ of Corti. In effect, the model turns classic assumptions about spatial impedance relations and power-flow direction within the sensory epithelium upside down.


Asunto(s)
Cóclea , Órgano Espiral , Animales , Órgano Espiral/fisiología , Cóclea/fisiología , Membrana Basilar/fisiología , Células Ciliadas Auditivas Externas/fisiología , Sonido , Vibración , Mamíferos
6.
Proc Natl Acad Sci U S A ; 115(21): E4853-E4860, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29735658

RESUMEN

Traumatic noise causes hearing loss by damaging sensory hair cells and their auditory synapses. There are no treatments. Here, we investigated mice exposed to a blast wave approximating a roadside bomb. In vivo cochlear imaging revealed an increase in the volume of endolymph, the fluid within scala media, termed endolymphatic hydrops. Endolymphatic hydrops, hair cell loss, and cochlear synaptopathy were initiated by trauma to the mechanosensitive hair cell stereocilia and were K+-dependent. Increasing the osmolality of the adjacent perilymph treated endolymphatic hydrops and prevented synaptopathy, but did not prevent hair cell loss. Conversely, inducing endolymphatic hydrops in control mice by lowering perilymph osmolality caused cochlear synaptopathy that was glutamate-dependent, but did not cause hair cell loss. Thus, endolymphatic hydrops is a surrogate marker for synaptic bouton swelling after hair cells release excitotoxic levels of glutamate. Because osmotic stabilization prevents neural damage, it is a potential treatment to reduce hearing loss after noise exposure.


Asunto(s)
Cóclea/fisiopatología , Enfermedades Cocleares/prevención & control , Hidropesía Endolinfática/fisiopatología , Células Ciliadas Auditivas/patología , Pérdida Auditiva Provocada por Ruido/prevención & control , Ruido/efectos adversos , Ósmosis , Animales , Umbral Auditivo , Enfermedades Cocleares/fisiopatología , Pérdida Auditiva Provocada por Ruido/fisiopatología , Ratones
7.
J Neurosci ; 39(10): 1805-1816, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30651330

RESUMEN

Mammalian hearing sensitivity and frequency selectivity depend on a mechanical amplification process mediated by outer hair cells (OHCs). OHCs are situated within the organ of Corti atop the basilar membrane (BM), which supports sound-evoked traveling waves. It is well established that OHCs generate force to selectively amplify BM traveling waves where they peak, and that amplification accumulates from one location to the next over this narrow cochlear region. However, recent measurements demonstrate that traveling waves along the apical surface of the organ of Corti, the reticular lamina (RL), are amplified over a much broader region. Whether OHC forces accumulate along the length of the RL traveling wave to provide a form of "global" cochlear amplification is unclear. Here we examined the spatial accumulation of RL amplification. In mice of either sex, we used tones to suppress amplification from different cochlear regions and examined the effect on RL vibrations near and far from the traveling-wave peak. We found that although OHC forces amplify the entire RL traveling wave, amplification only accumulates near the peak, over the same region where BM motion is amplified. This contradicts the notion that RL motion is involved in a global amplification mechanism and reveals that the mechanical properties of the BM and organ of Corti tune how OHC forces accumulate spatially. Restricting the spatial buildup of amplification enhances frequency selectivity by sharpening the peaks of cochlear traveling waves and constrains the number of OHCs responsible for mechanical sensitivity at each location.SIGNIFICANCE STATEMENT Outer hair cells generate force to amplify traveling waves within the mammalian cochlea. This force generation is critical to the ability to detect and discriminate sounds. Nevertheless, how these forces couple to the motions of the surrounding structures and integrate along the cochlear length remains poorly understood. Here we demonstrate that outer hair cell-generated forces amplify traveling-wave motion on the organ of Corti throughout the wave's extent, but that these forces only accumulate longitudinally over a region near the wave's peak. The longitudinal coupling of outer hair cell-generated forces is therefore spatially tuned, likely by the mechanical properties of the basilar membrane and organ of Corti. Our findings provide new insight into the mechanical processes that underlie sensitive hearing.


Asunto(s)
Células Ciliadas Auditivas Externas/fisiología , Audición/fisiología , Órgano Espiral/fisiología , Estimulación Acústica , Animales , Ondas Encefálicas , Femenino , Masculino , Mecanotransducción Celular/fisiología , Ratones Endogámicos CBA
8.
Opt Express ; 27(23): 33333-33350, 2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-31878404

RESUMEN

There is growing interest in using the exquisite phase sensitivity of optical coherence tomography (OCT) to measure the vibratory response in organ systems such as the middle and inner ear. Using frequency domain analysis, it is possible to achieve picometer sensitivity to vibration over a wide frequency band. Here we explore the limits of the frequency domain vibratory sensitivity due to additive noise and consider the implication of phase noise statistics on the estimation of vibratory amplitude and phase. Noise statistics are derived in both the Rayleigh (s/n = 0) and Normal distribution (s/n > 3) limits. These theoretical findings are explored using simulation and verified with experiments using a swept-laser system and a piezo electric element. A metric for sensitivity is proposed based on the 98% confidence interval for the Rayleigh distribution.

9.
J Neurophysiol ; 120(6): 2847-2857, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30281386

RESUMEN

There is indirect evidence that the mammalian cochlea in the low-frequency apical and the more commonly studied high-frequency basal regions function in fundamentally different ways. Here, we directly tested this hypothesis by measuring sound-induced vibrations of the organ of Corti (OoC) at three turns of the gerbil cochlea using volumetric optical coherence tomography vibrometry (VOCTV), an approach that permits noninvasive imaging through the bone. In the apical turn, there was little frequency selectivity, and the displacement-vs.-frequency curves had low-pass filter characteristics with a corner frequency of ~0.5-0.9 kHz. The vibratory magnitudes increased compressively with increasing stimulus intensity at all frequencies. In the middle turn, responses were similar except for a slight peak in the response at ~2.5 kHz. The gain was ~50 dB at the peak and 30-40 dB at lower frequencies. In the basal turn, responses were sharply tuned and compressively nonlinear, consistent with observations in the literature. These data demonstrated that there is a transition of the mechanical response of the OoC along the length of the cochlea such that frequency tuning is sharper in the base than in the apex. Because the responses are fundamentally different, it is not appropriate to simply frequency shift vibratory data measured at one cochlear location to predict the cochlear responses at other locations. Furthermore, this means that the number of hair cells stimulated by sound is larger for low-frequency stimuli and smaller for high-frequency stimuli for the same intensity level. Thus the mechanisms of central processing of sounds must vary with frequency. NEW & NOTEWORTHY A volumetric optical coherence tomography and vibrometry system was used to probe cochlear mechanics within the intact gerbil cochlea. We found a gradual transition of the mechanical response of the organ of Corti along the length of the cochlea such that tuning at the base is dramatically sharper than that at the apex. These data help to explain discrepancies in the literature regarding how the cochlea processes low-frequency sounds.


Asunto(s)
Órgano Espiral/fisiología , Vibración , Animales , Femenino , Gerbillinae , Masculino , Órgano Espiral/diagnóstico por imagen , Tomografía de Coherencia Óptica
10.
Opt Lett ; 43(9): 1966-1969, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29714773

RESUMEN

A highly phase stable hand-held (HH) endoscopic system has been developed for optical coherence tomography and vibrometry. Designed to transit the ear canal to the middle ear space and peer through the round window (RW), it is capable of imaging the vibratory function of the cochlear soft tissues with subnanometer scale sensitivity. A side-looking, 9 cm long rigid endoscope with a distal diameter of 1.2 mm, was able to fit within the RW niche and provide imaging access. The phase stability was achieved in part by fully integrating a Michelson interferometer into the HH device. Ex vivo imaging of a domestic pig demonstrated the system's ability for functional vibratory imaging of the cochlea via the RW.


Asunto(s)
Cóclea/diagnóstico por imagen , Endoscopía/métodos , Ventana Redonda/diagnóstico por imagen , Tomografía de Coherencia Óptica/métodos , Estimulación Acústica , Animales , Porcinos
11.
Proc Natl Acad Sci U S A ; 112(10): 3128-33, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25737536

RESUMEN

Sound is encoded within the auditory portion of the inner ear, the cochlea, after propagating down its length as a traveling wave. For over half a century, vibratory measurements to study cochlear traveling waves have been made using invasive approaches such as laser Doppler vibrometry. Although these studies have provided critical information regarding the nonlinear processes within the living cochlea that increase the amplitude of vibration and sharpen frequency tuning, the data have typically been limited to point measurements of basilar membrane vibration. In addition, opening the cochlea may alter its function and affect the findings. Here we describe volumetric optical coherence tomography vibrometry, a technique that overcomes these limitations by providing depth-resolved displacement measurements at 200 kHz inside a 3D volume of tissue with picometer sensitivity. We studied the mouse cochlea by imaging noninvasively through the surrounding bone to measure sound-induced vibrations of the sensory structures in vivo, and report, to our knowledge, the first measures of tectorial membrane vibration within the unopened cochlea. We found that the tectorial membrane sustains traveling wave propagation. Compared with basilar membrane traveling waves, tectorial membrane traveling waves have larger dynamic ranges, sharper frequency tuning, and apically shifted positions of peak vibration. These findings explain discrepancies between previously published basilar membrane vibration and auditory nerve single unit data. Because the tectorial membrane directly overlies the inner hair cell stereociliary bundles, these data provide the most accurate characterization of the stimulus shaping the afferent auditory response available to date.


Asunto(s)
Membrana Basilar/fisiología , Cóclea/fisiología , Membrana Tectoria/fisiología , Animales , Ratones , Tomografía de Coherencia Óptica
12.
J Neurosci ; 36(31): 8160-73, 2016 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-27488636

RESUMEN

UNLABELLED: The exquisite sensitivity and frequency discrimination of mammalian hearing underlie the ability to understand complex speech in noise. This requires force generation by cochlear outer hair cells (OHCs) to amplify the basilar membrane traveling wave; however, it is unclear how amplification is achieved with sharp frequency tuning. Here we investigated the origin of tuning by measuring sound-induced 2-D vibrations within the mouse organ of Corti in vivo Our goal was to determine the transfer function relating the radial shear between the structures that deflect the OHC bundle, the tectorial membrane and reticular lamina, to the transverse motion of the basilar membrane. We found that, after normalizing their responses to the vibration of the basilar membrane, the radial vibrations of the tectorial membrane and reticular lamina were tuned. The radial tuning peaked at a higher frequency than transverse basilar membrane tuning in the passive, postmortem condition. The radial tuning was similar in dead mice, indicating that this reflected passive, not active, mechanics. These findings were exaggerated in Tecta(C1509G/C1509G) mice, where the tectorial membrane is detached from OHC stereocilia, arguing that the tuning of radial vibrations within the hair cell epithelium is distinct from tectorial membrane tuning. Together, these results reveal a passive, frequency-dependent contribution to cochlear filtering that is independent of basilar membrane filtering. These data argue that passive mechanics within the organ of Corti sharpen frequency selectivity by defining which OHCs enhance the vibration of the basilar membrane, thereby tuning the gain of cochlear amplification. SIGNIFICANCE STATEMENT: Outer hair cells amplify the traveling wave within the mammalian cochlea. The resultant gain and frequency sharpening are necessary for speech discrimination, particularly in the presence of background noise. Here we measured the 2-D motion of the organ of Corti in mice and found that the structures that stimulate the outer hair cell stereocilia, the tectorial membrane and reticular lamina, were sharply tuned in the radial direction. Radial tuning was similar in dead mice and in mice lacking a tectorial membrane. This suggests that radial tuning comes from passive mechanics within the hair cell epithelium, and that these mechanics, at least in part, may tune the gain of cochlear amplification.


Asunto(s)
Estimulación Acústica/métodos , Mecanotransducción Celular/fisiología , Modelos Neurológicos , Órgano Espiral/fisiología , Percepción de la Altura Tonal/fisiología , Membrana Tectoria/fisiología , Animales , Simulación por Computador , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Presión , Resistencia al Corte/fisiología , Vibración
13.
J Neurosci ; 36(35): 9201-16, 2016 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-27581460

RESUMEN

UNLABELLED: Neuroplastin (Nptn) is a member of the Ig superfamily and is expressed in two isoforms, Np55 and Np65. Np65 regulates synaptic transmission but the function of Np55 is unknown. In an N-ethyl-N-nitrosaurea mutagenesis screen, we have now generated a mouse line with an Nptn mutation that causes deafness. We show that Np55 is expressed in stereocilia of outer hair cells (OHCs) but not inner hair cells and affects interactions of stereocilia with the tectorial membrane. In vivo vibrometry demonstrates that cochlear amplification is absent in Nptn mutant mice, which is consistent with the failure of OHC stereocilia to maintain stable interactions with the tectorial membrane. Hair bundles show morphological defects as the mutant mice age and while mechanotransduction currents can be evoked in early postnatal hair cells, cochlea microphonics recordings indicate that mechanontransduction is affected as the mutant mice age. We thus conclude that differential splicing leads to functional diversification of Nptn, where Np55 is essential for OHC function, while Np65 is implicated in the regulation of synaptic function. SIGNIFICANCE STATEMENT: Amplification of input sound signals, which is needed for the auditory sense organ to detect sounds over a wide intensity range, depends on mechanical coupling of outer hair cells to the tectorial membrane. The current study shows that neuroplastin, a member of the Ig superfamily, which has previously been linked to the regulation of synaptic plasticity, is critical to maintain a stable mechanical link of outer hair cells with the tectorial membrane. In vivo recordings demonstrate that neuroplastin is essential for sound amplification and that mutation in neuroplastin leads to auditory impairment in mice.


Asunto(s)
Células Ciliadas Auditivas Externas/citología , Mecanotransducción Celular/fisiología , Glicoproteínas de Membrana/metabolismo , Estereocilios/fisiología , Estimulación Acústica , Animales , Animales Recién Nacidos , Análisis Mutacional de ADN , Sordera/genética , Sordera/patología , Potenciales Evocados Auditivos del Tronco Encefálico/genética , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Células Ciliadas Auditivas Internas/metabolismo , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Rastreo , Mutación/genética , Emisiones Otoacústicas Espontáneas/genética , Técnicas de Placa-Clamp , Estimulación Física , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas/genética , ARN Mensajero/metabolismo , Estereocilios/ultraestructura , Tomografía de Coherencia Óptica , Transducción Genética
14.
J Physiol ; 595(13): 4549-4561, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28382742

RESUMEN

KEY POINTS: A popular conception of mammalian cochlear physiology is that tuned mechanical vibration of the basilar membrane defines the frequency response of the innervating auditory nerve fibres However, the data supporting these concepts come from vibratory measurements at cochlear locations tuned to high frequencies (>7 kHz). Here, we measured the travelling wave in regions of the guinea pig cochlea that respond to low frequencies (<2 kHz) and found that mechanical tuning was broad and did not match auditory nerve tuning characteristics. Non-linear amplification of the travelling wave functioned over a broad frequency range and did not substantially sharpen frequency tuning. Thus, the neural encoding of low-frequency sounds, which includes most of the information conveyed by human speech, is not principally determined by basilar membrane mechanics. ABSTRACT: The popular notion of mammalian cochlear function is that auditory nerves are tuned to respond best to different sound frequencies because basilar membrane vibration is mechanically tuned to different frequencies along its length. However, this concept has only been demonstrated in regions of the cochlea tuned to frequencies >7 kHz, not in regions sensitive to lower frequencies where human speech is encoded. Here, we overcame historical technical limitations and non-invasively measured sound-induced vibrations at four locations distributed over the apical two turns of the guinea pig cochlea. In turn 3, the responses demonstrated low-pass filter characteristics. In turn 2, the responses were low-pass-like, in that they occasionally did have a slight peak near the corner frequency. The corner frequencies of the responses were tonotopically tuned and ranged from 384 to 668 Hz. Non-linear gain, or amplification of the vibrations in response to low-intensity stimuli, was found both below and above the corner frequencies. Post mortem, cochlear gain disappeared. The non-linear gain was typically 10-30 dB and was broad-band rather than sharply tuned. However, the gain did reach nearly 50 dB in turn 2 for higher stimulus frequencies, nearly the amount of gain found in basal cochlear regions. Thus, our data prove that mechanical responses do not match neural responses and that cochlear amplification does not appreciably sharpen frequency tuning for cochlear regions that respond to frequencies <2 kHz. These data indicate that the non-linear processing of sound performed by the guinea pig cochlea varies substantially between the cochlear apex and base.


Asunto(s)
Potenciales de Acción , Cóclea/fisiología , Audición , Animales , Percepción Auditiva , Femenino , Cobayas , Masculino , Sonido , Vibración
15.
PLoS Genet ; 10(1): e1004055, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24391519

RESUMEN

The Notch signaling pathway is thought to regulate multiple stages of inner ear development. Mutations in the Notch signaling pathway cause disruptions in the number and arrangement of hair cells and supporting cells in sensory regions of the ear. In this study we identify an insertional mutation in the mouse Sfswap gene, a putative splicing factor, that results in mice with vestibular and cochlear defects that are consistent with disrupted Notch signaling. Homozygous Sfswap mutants display hyperactivity and circling behavior consistent with vestibular defects, and significantly impaired hearing. The cochlea of newborn Sfswap mutant mice shows a significant reduction in outer hair cells and supporting cells and ectopic inner hair cells. This phenotype most closely resembles that seen in hypomorphic alleles of the Notch ligand Jagged1 (Jag1). We show that Jag1; Sfswap compound mutants have inner ear defects that are more severe than expected from simple additive effects of the single mutants, indicating a genetic interaction between Sfswap and Jag1. In addition, expression of genes involved in Notch signaling in the inner ear are reduced in Sfswap mutants. There is increased interest in how splicing affects inner ear development and function. Our work is one of the first studies to suggest that a putative splicing factor has specific effects on Notch signaling pathway members and inner ear development.


Asunto(s)
Empalme Alternativo/genética , Oído Interno/crecimiento & desarrollo , Proteínas de Unión al ARN/genética , Receptores Notch/genética , Animales , Tipificación del Cuerpo/genética , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Cóclea/crecimiento & desarrollo , Cóclea/patología , Oído Interno/metabolismo , Oído Interno/patología , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/patología , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteína Jagged-1 , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Mutación , Factores de Empalme de ARN , Proteínas de Unión al ARN/metabolismo , Proteínas Serrate-Jagged , Transducción de Señal/genética , Vestíbulo del Laberinto/crecimiento & desarrollo , Vestíbulo del Laberinto/patología
16.
Ear Hear ; 37(3): e160-72, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26709749

RESUMEN

OBJECTIVES: Cochlear implants are a standard therapy for deafness, yet the ability of implanted patients to understand speech varies widely. To better understand this variability in outcomes, the authors used functional near-infrared spectroscopy to image activity within regions of the auditory cortex and compare the results to behavioral measures of speech perception. DESIGN: The authors studied 32 deaf adults hearing through cochlear implants and 35 normal-hearing controls. The authors used functional near-infrared spectroscopy to measure responses within the lateral temporal lobe and the superior temporal gyrus to speech stimuli of varying intelligibility. The speech stimuli included normal speech, channelized speech (vocoded into 20 frequency bands), and scrambled speech (the 20 frequency bands were shuffled in random order). The authors also used environmental sounds as a control stimulus. Behavioral measures consisted of the speech reception threshold, consonant-nucleus-consonant words, and AzBio sentence tests measured in quiet. RESULTS: Both control and implanted participants with good speech perception exhibited greater cortical activations to natural speech than to unintelligible speech. In contrast, implanted participants with poor speech perception had large, indistinguishable cortical activations to all stimuli. The ratio of cortical activation to normal speech to that of scrambled speech directly correlated with the consonant-nucleus-consonant words and AzBio sentences scores. This pattern of cortical activation was not correlated with auditory threshold, age, side of implantation, or time after implantation. Turning off the implant reduced the cortical activations in all implanted participants. CONCLUSIONS: Together, these data indicate that the responses the authors measured within the lateral temporal lobe and the superior temporal gyrus correlate with behavioral measures of speech perception, demonstrating a neural basis for the variability in speech understanding outcomes after cochlear implantation.


Asunto(s)
Corteza Auditiva/diagnóstico por imagen , Implantación Coclear , Comprensión , Sordera/rehabilitación , Percepción del Habla , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Implantes Cocleares , Femenino , Neuroimagen Funcional , Humanos , Masculino , Persona de Mediana Edad , Espectroscopía Infrarroja Corta , Lóbulo Temporal/diagnóstico por imagen , Adulto Joven
17.
J Neurophysiol ; 113(10): 3531-42, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25810486

RESUMEN

Prestin is a membrane protein necessary for outer hair cell (OHC) electromotility and normal hearing. Its regulatory mechanisms are unknown. Several mouse models of hearing loss demonstrate increased prestin, inspiring us to investigate how hearing loss might feedback onto OHCs. To test whether centrally mediated feedback regulates prestin, we developed a novel model of inner hair cell loss. Injection of diphtheria toxin (DT) into adult CBA mice produced significant loss of inner hair cells without affecting OHCs. Thus, DT-injected mice were deaf because they had no afferent auditory input despite OHCs continuing to receive normal auditory mechanical stimulation and having normal function. Patch-clamp experiments demonstrated no change in OHC prestin, indicating that loss of information transfer centrally did not alter prestin expression. To test whether local mechanical feedback regulates prestin, we used Tecta(C1509G) mice, where the tectorial membrane is malformed and only some OHCs are stimulated. OHCs connected to the tectorial membrane had normal prestin levels, whereas OHCs not connected to the tectorial membrane had elevated prestin levels, supporting an activity-dependent model. To test whether the endocochlear potential was necessary for prestin regulation, we studied Tecta(C1509G) mice at different developmental ages. OHCs not connected to the tectorial membrane had lower than normal prestin levels before the onset of the endocochlear potential and higher than normal prestin levels after the onset of the endocochlear potential. Taken together, these data indicate that OHC prestin levels are regulated through local feedback that requires mechanoelectrical transduction currents. This adaptation may serve to compensate for variations in the local mechanical environment.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Células Ciliadas Auditivas Externas/metabolismo , Proteínas Motoras Moleculares/metabolismo , Envejecimiento , Animales , Animales Recién Nacidos , Muerte Celular/efectos de los fármacos , Toxina Diftérica/farmacología , Capacidad Eléctrica , Potenciales Evocados Auditivos del Tronco Encefálico/efectos de los fármacos , Potenciales Evocados Auditivos del Tronco Encefálico/genética , Proteínas de la Matriz Extracelular/genética , Proteínas Ligadas a GPI/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Células Ciliadas Auditivas Externas/efectos de los fármacos , Células Ciliadas Auditivas Externas/ultraestructura , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Ratones , Ratones Endogámicos CBA , Ratones Transgénicos/genética , Microscopía Electrónica de Rastreo , Mutación/genética , Emisiones Otoacústicas Espontáneas/genética , Técnicas de Placa-Clamp
18.
Proc Natl Acad Sci U S A ; 109(21): 8167-72, 2012 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-22562792

RESUMEN

Inner ear hair cells are specialized sensory cells essential for auditory function. Previous studies have shown that the sensory epithelium is postmitotic, but it harbors cells that can behave as progenitor cells in vitro, including the ability to form new hair cells. Lgr5, a Wnt target gene, marks distinct supporting cell types in the neonatal cochlea. Here, we tested the hypothesis that Lgr5(+) cells are Wnt-responsive sensory precursor cells. In contrast to their quiescent in vivo behavior, Lgr5(+) cells isolated by flow cytometry from neonatal Lgr5(EGFP-CreERT2/+) mice proliferated and formed clonal colonies. After 10 d in culture, new sensory cells formed and displayed specific hair cell markers (myo7a, calretinin, parvalbumin, myo6) and stereocilia-like structures expressing F-actin and espin. In comparison with other supporting cells, Lgr5(+) cells were enriched precursors to myo7a(+) cells, most of which formed without mitotic division. Treatment with Wnt agonists increased proliferation and colony-formation capacity. Conversely, small-molecule inhibitors of Wnt signaling suppressed proliferation without compromising the myo7a(+) cells formed by direct differentiation. In vivo lineage tracing supported the idea that Lgr5(+) cells give rise to myo7a(+) hair cells in the neonatal Lgr5(EGFP-CreERT2/+) cochlea. In addition, overexpression of ß-catenin initiated proliferation and led to transient expansion of Lgr5(+) cells within the cochlear sensory epithelium. These results suggest that Lgr5 marks sensory precursors and that Wnt signaling can promote their proliferation and provide mechanistic insights into Wnt-responsive progenitor cells during sensory organ development.


Asunto(s)
Cóclea/citología , Cóclea/crecimiento & desarrollo , Células Ciliadas Auditivas Internas/metabolismo , Células Madre/metabolismo , Vía de Señalización Wnt/fisiología , Animales , Animales Recién Nacidos , Biomarcadores/metabolismo , División Celular/fisiología , Linaje de la Célula/fisiología , Citometría de Flujo , Proteínas Fluorescentes Verdes/genética , Células Ciliadas Auditivas Internas/citología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Regeneración/fisiología , Células Madre/citología
19.
BMC Genomics ; 15: 1155, 2014 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-25528277

RESUMEN

BACKGROUND: The genetic diversity of loci and mutations underlying hereditary hearing loss is an active area of investigation. To identify loci associated with predominantly non-syndromic sensorineural hearing loss, we performed exome sequencing of families and of single probands, as well as copy number variation (CNV) mapping in a case-control cohort. RESULTS: Analysis of three distinct families revealed several candidate loci in two families and a single strong candidate gene, MYH7B, for hearing loss in one family. MYH7B encodes a Type II myosin, consistent with a role for cytoskeletal proteins in hearing. High-resolution genome-wide CNV analysis of 150 cases and 157 controls revealed deletions in genes known to be involved in hearing (e.g. GJB6, OTOA, and STRC, encoding connexin 30, otoancorin, and stereocilin, respectively), supporting CNV contributions to hearing loss phenotypes. Additionally, a novel region on chromosome 16 containing part of the PDXDC1 gene was found to be frequently deleted in hearing loss patients (OR=3.91, 95% CI: 1.62-9.40, p=1.45×10(-7)). CONCLUSIONS: We conclude that many known as well as novel loci and distinct types of mutations not typically tested in clinical settings can contribute to the etiology of hearing loss. Our study also demonstrates the challenges of exome sequencing and genome-wide CNV mapping for direct clinical application, and illustrates the need for functional and clinical follow-up as well as curated open-access databases.


Asunto(s)
Mapeo Cromosómico , Variaciones en el Número de Copia de ADN , Exoma/genética , Genoma Humano/genética , Pérdida Auditiva Sensorineural/genética , Oído Interno/metabolismo , Femenino , Regulación de la Expresión Génica , Genómica , Heterocigoto , Humanos , Masculino , Mutación Missense , Miosina Tipo II/genética , Linaje , Análisis de Secuencia de ADN
20.
J Neurophysiol ; 112(5): 1192-204, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24920025

RESUMEN

The tonotopic map of the mammalian cochlea is commonly thought to be determined by the passive mechanical properties of the basilar membrane. The other tissues and cells that make up the organ of Corti also have passive mechanical properties; however, their roles are less well understood. In addition, active forces produced by outer hair cells (OHCs) enhance the vibration of the basilar membrane, termed cochlear amplification. Here, we studied how these biomechanical components interact using optical coherence tomography, which permits vibratory measurements within tissue. We measured not only classical basilar membrane tuning curves, but also vibratory responses from the rest of the organ of Corti within the mouse cochlear apex in vivo. As expected, basilar membrane tuning was sharp in live mice and broad in dead mice. Interestingly, the vibratory response of the region lateral to the OHCs, the "lateral compartment," demonstrated frequency-dependent phase differences relative to the basilar membrane. This was sharply tuned in both live and dead mice. We then measured basilar membrane and lateral compartment vibration in transgenic mice with targeted alterations in cochlear mechanics. Prestin(499/499), Prestin(-/-), and Tecta(C1509G/C1509G) mice demonstrated no cochlear amplification but maintained the lateral compartment phase difference. In contrast, Sfswap(Tg/Tg) mice maintained cochlear amplification but did not demonstrate the lateral compartment phase difference. These data indicate that the organ of Corti has complex micromechanical vibratory characteristics, with passive, yet sharply tuned, vibratory characteristics associated with the supporting cells. These characteristics may tune OHC force generation to produce the sharp frequency selectivity of mammalian hearing.


Asunto(s)
Membrana Basilar/fisiología , Audición/fisiología , Órgano Espiral/fisiología , Vibración , Estimulación Acústica , Animales , Fenómenos Biomecánicos , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/fisiología , Femenino , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/fisiología , Células Ciliadas Auditivas Externas/fisiología , Masculino , Ratones , Ratones Noqueados , Proteínas Motoras Moleculares/genética , Proteínas Motoras Moleculares/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda