RESUMEN
Synaptic-vesicle (SV) recruitment is thought to maintain reliable neurotransmitter release during high-frequency signaling. However, the mechanism underlying the SV reloading for sustained neurotransmission at central synapses remains unknown. To elucidate this, we performed direct observations of SV reloading and mobility at a single-vesicle level near the plasma membrane in cerebellar mossy fiber terminals using total internal reflection fluorescence microscopy, together with simultaneous recordings of membrane fusion by capacitance measurements. We found that actin disruption abolished the rapid SV recruitment and reduced sustained release. In contrast, induction of actin polymerization and stabilization did not affect vesicle recruitment and release, suggesting that the presence of actin filaments, rather than actin dynamics, was required for the rapid recruitment. Single-particle tracking experiments of quantum dot-labeled vesicles, which allows nanoscale resolution of vesicle mobility, revealed that actin disruption caused vesicles to diffuse more rapidly. Hidden Markov modeling with Bayesian inference revealed that SVs had two diffusion states under normal conditions: free-diffusing and trapped. After disruption of the actin filament, vesicles tended to have only the free-diffusing state. F-actin staining showed that actin filaments were localized outside the active zones (AZs) and surrounded some SV trajectories. Perturbation of SV mobility, possibly through interference with biomolecular condensates, also suggested that the restricted diffusion state determined the rate of SV recruitment. We propose that actin filaments confined SVs near the AZ to achieve rapid and efficient recruitment followed by priming and sustained synaptic transmission.
Asunto(s)
Actinas , Transmisión Sináptica , Vesículas Sinápticas , Actinas/metabolismo , Animales , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/fisiología , Transmisión Sináptica/fisiología , Citoesqueleto de Actina/metabolismo , Ratas , Microscopía Fluorescente/métodos , Puntos Cuánticos , Sinapsis/metabolismo , Sinapsis/fisiologíaRESUMEN
Biallelic variants of 4-hydroxyphenylpyruvate dioxygenase-like (HPDL) gene have been linked to neurodegenerative disorders ranging from severe neonatal encephalopathy to early-onset spastic paraplegia. We identified a novel homozygous variant, c.340G > T (p.Gly114Cys), in the HPDL gene in two siblings with autosomal recessive hereditary spastic paraplegia (HSP). Despite sharing the same likely pathogenic variant, the older sister had pure HSP, whereas her brother had severe and complicated HSP, accompanied by early-onset mental retardation and abnormalities in magnetic resonance imaging. Given the clinical heterogeneity and potential for treatable conditions in HPDL-related diseases, we emphasize the importance of genetic testing for the HPDL gene.
Asunto(s)
Homocigoto , Hermanos , Paraplejía Espástica Hereditaria , Niño , Femenino , Humanos , Masculino , Pueblos del Este de Asia , Japón , Imagen por Resonancia Magnética , Mutación/genética , Linaje , Paraplejía Espástica Hereditaria/genéticaRESUMEN
BACKGROUND: The causative genes for over 60% of inherited peripheral neuropathy (IPN) remain unidentified. This study endeavours to enhance the genetic diagnostic rate in IPN cases by conducting screenings focused on non-coding repeat expansions. METHODS: We gathered data from 2424 unrelated Japanese patients diagnosed with IPN, among whom 1555 cases with unidentified genetic causes, as determined through comprehensive prescreening analyses, were selected for the study. Screening for CGG non-coding repeat expansions in LRP12, GIPC1 and RILPL1 genes was conducted using PCR and long-read sequencing technologies. RESULTS: We identified CGG repeat expansions in LRP12 from 44 cases, establishing it as the fourth most common aetiology in Japanese IPN. Most cases (29/37) exhibited distal limb weakness, without ptosis, ophthalmoplegia, facial muscle weakness or bulbar palsy. Neurogenic changes were frequently observed in both needle electromyography (97%) and skeletal muscle tissue (100%). In nerve conduction studies, 28 cases primarily showed impairment in motor nerves without concurrent involvement of sensory nerves, consistent with the phenotype of hereditary motor neuropathy. In seven cases, both motor and sensory nerves were affected, resembling the Charcot-Marie-Tooth (CMT) phenotype. Importantly, the mean CGG repeat number detected in the present patients was significantly shorter than that of patients with LRP12-oculopharyngodistal myopathy (p<0.0001). Additionally, GIPC1 and RILPL1 repeat expansions were absent in our IPN cases. CONCLUSION: We initially elucidate LRP12 repeat expansions as a prevalent cause of CMT, highlighting the necessity for an adapted screening strategy in clinical practice, particularly when addressing patients with IPN.
RESUMEN
BACKGROUND: NOTCH2NLC GGC repeat expansions have been associated with various neurogenerative disorders, including neuronal intranuclear inclusion disease and inherited peripheral neuropathies (IPNs). However, only a few NOTCH2NLC-related disease studies in IPN have been reported, and the clinical and genetic spectra remain unclear. Thus, this study aimed to describe the clinical and genetic manifestations of NOTCH2NLC-related IPNs. METHOD: Among 2692 Japanese patients clinically diagnosed with IPN/Charcot-Marie-Tooth disease (CMT), we analysed NOTCH2NLC repeat expansion in 1783 unrelated patients without a genetic diagnosis. Screening and repeat size determination of NOTCH2NLC repeat expansion were performed using repeat-primed PCR and fluorescence amplicon length analysis-PCR. RESULTS: NOTCH2NLC repeat expansions were identified in 26 cases of IPN/CMT from 22 unrelated families. The mean median motor nerve conduction velocity was 41 m/s (range, 30.8-59.4), and 18 cases (69%) were classified as intermediate CMT. The mean age of onset was 32.7 (range, 7-61) years. In addition to motor sensory neuropathy symptoms, dysautonomia and involuntary movements were common (44% and 29%). Furthermore, the correlation between the age of onset or clinical symptoms and the repeat size remains unclear. CONCLUSIONS: These findings of this study help us understand the clinical heterogeneity of NOTCH2NLC-related disease, such as non-length-dependent motor dominant phenotype and prominent autonomic involvement. This study also emphasise the importance of genetic screening, regardless of the age of onset and type of CMT, particularly in patients of Asian origin, presenting with intermediate conduction velocities and dysautonomia.
Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Disautonomías Primarias , Humanos , Enfermedad de Charcot-Marie-Tooth/genética , Cuerpos de Inclusión Intranucleares/genética , Japón , FenotipoRESUMEN
BACKGROUND AND AIMS: Mutations in neurofilament genes have been linked to several neuromuscular disorders. The neurofilament heavy (NEFH) gene was identified as the causative gene of Charcot-Marie-Tooth disease type 2CC (CMT2CC) in 2016, with a toxic gain of function mechanism caused by the translation and aggregation of cryptic amyloidogenic element (CAE) in the 3' untranslated region (UTR). But the NEFH-related clinical and genetic spectrums are still unclear in Japan. METHODS: We analyzed all variants in the NEFH gene from our in-house whole-exome sequencing data, established from Japanese nationwide patients with neuromuscular disorders, including Charcot-Marie-Tooth (CMT) disease and spinal muscular atrophy (SMA). RESULTS: We identified a c.3017dup (p.Pro1007Alafs*56) variant in NEFH from three families clinically diagnosed with CMT, and one family with SMA. In addition to the patients presented with typical peripheral neuropathies, pyramidal signs were observed from one CMT patient. Whereas the SMA patients showed severe characteristic weakness of triceps brachii and quadriceps femoris. All of these four families reside in Kagoshima Prefecture of Japan, and a following haplotype analysis strongly suggests a founder effect. INTERPRETATION: This is the original report referring to a founder mutation in NEFH. The clinical diversity in our study, comprising CMT, with or without pyramidal signs, and SMA, suggest an extensive involvement of peripheral nerve, anterior horn cells, or both. Our findings broaden the phenotypic spectrum of NEFH-related disorders.
Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Efecto Fundador , Proteínas de Neurofilamentos , Regiones no Traducidas 3' , Enfermedad de Charcot-Marie-Tooth/genética , Humanos , Japón , Mutación , Proteínas de Neurofilamentos/genética , Fenotipo , Secuenciación del ExomaRESUMEN
BACKGROUND AND AIMS: Some hereditary transthyretin (ATTRv) amyloidosis patients are misdiagnosed as Charcot-Marie-Tooth disease (CMT) at onset. We assess the findings to identify ATTRv amyloidosis among patients with suspected CMT to screen transthyretin gene variants for treatments. METHODS: We assessed clinical, cerebrospinal fluid, and electrophysiological findings by comparing ATTRv amyloidosis patients with suspected CMT (n = 10) and CMT patients (n = 489). RESULTS: The median (interquartile range) age at onset of neurological symptoms was 69 (64.2-70) years in the ATTRv amyloidosis vs 12 (5-37.2) years in CMT group (Mann-Whitney U, p < 0.01). The proportion of patients with initial sensory symptoms was 70% in the ATTRv amyloidosis group vs 7.1% in CMT group (Fisher's exact, p < 0.01). The proportion of patients with histories of suspected chronic inflammatory demyelinating polyneuropathy (CIDP) were 50% in the ATTRv amyloidosis group vs 8.7% in CMT group (Fisher's exact, p < .01). Other measures and outcomes were not different between the two groups. Five of the six patients with ATTRv amyloidosis received treatment and survived. INTERPRETATION: For effective treatments, the transthyretin gene should be screened in patients with suspected CMT with old age at onset of neurological symptoms, initial sensory symptoms, and histories of suspected CIDP.
Asunto(s)
Neuropatías Amiloides Familiares , Enfermedad de Charcot-Marie-Tooth , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante , Prealbúmina/genética , Anciano , Neuropatías Amiloides Familiares/diagnóstico , Neuropatías Amiloides Familiares/genética , Neuropatías Amiloides Familiares/terapia , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/terapia , HumanosRESUMEN
The presence of fragile X mental retardation 1 (FMR1) premutation has been linked to patients with a certain type of cerebellar ataxia, the fragile X-associated tremor/ataxia syndrome (FXTAS). However, its prevalence in Japan has yet to be clarified. The aim of the present study is to determine the prevalence of FXTAS in Japanese patients with cerebellar ataxia and to describe their clinical characteristics. DNA samples were collected from 1328 Japanese patients with cerebellar ataxia, referred for genetic diagnosis. Among them, 995 patients with negative results for the most common spinocerebellar ataxia subtypes were screened for FMR1 premutation. Comprehensive clinical and radiological analyses were performed for the patients harbouring FMR1 premutation. We herein identified FMR1 premutation from one female and two male patients, who satisfied both clinical and radiological criteria of FXTAS (0.3%; 3/995) as well. Both male patients presented with high signal intensity of corticomedullary junction on diffusion-weighted magnetic resonance imaging, a finding comparable to that of neuronal intranuclear inclusion disease. The female patient mimicked multiple system atrophy in the early stages of her disease and developed aseptic meningitis with a suspected immune-mediated mechanism after the onset of FXTAS, which made her unique. Despite the lower prevalence rate in Japan than the previous reports in other countries, the present study emphasises the necessity to consider FXTAS with undiagnosed ataxia, regardless of men or women, particularly for those cases presenting with similar clinical and radiological findings with multiple system atrophy or neuronal intranuclear inclusion disease.
Asunto(s)
Ataxia Cerebelosa , Síndrome del Cromosoma X Frágil , Atrofia de Múltiples Sistemas , Ataxia/diagnóstico por imagen , Ataxia/epidemiología , Ataxia/genética , Ataxia Cerebelosa/diagnóstico por imagen , Ataxia Cerebelosa/epidemiología , Ataxia Cerebelosa/genética , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/diagnóstico por imagen , Síndrome del Cromosoma X Frágil/epidemiología , Síndrome del Cromosoma X Frágil/genética , Humanos , Cuerpos de Inclusión Intranucleares , Japón/epidemiología , Masculino , Enfermedades Neurodegenerativas , Prevalencia , Temblor/diagnóstico por imagen , Temblor/epidemiología , Temblor/genéticaRESUMEN
Femtosecond X-ray pulse lasers are promising probes for the elucidation of the multiconformational states of biomolecules because they enable snapshots of single biomolecules to be observed as coherent diffraction images. Multi-image processing using an X-ray free-electron laser has proven to be a successful structural analysis method for viruses. However, the performance of single-particle analysis (SPA) for flexible biomolecules with sizes ≤100 nm remains difficult. Owing to the multiconformational states of biomolecules and noisy character of diffraction images, diffraction image improvement by multi-image processing is often ineffective for such molecules. Herein, a single-image super-resolution (SR) model was constructed using an SR convolutional neural network (SRCNN). Data preparation was performed in silico to consider the actual observation situation with unknown molecular orientations and the fluctuation of molecular structure and incident X-ray intensity. It was demonstrated that the trained SRCNN model improved the single-particle diffraction image quality, corresponding to an observed image with an incident X-ray intensity (approximately three to seven times higher than the original X-ray intensity), while retaining the individuality of the diffraction images. The feasibility of SPA for flexible biomolecules with sizes ≤100 nm was dramatically increased by introducing the SRCNN improvement at the beginning of the various structural analysis schemes.
Asunto(s)
Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Procesamiento de Imagen Asistido por Computador/métodos , Rayos Láser , Difracción de Rayos XRESUMEN
The development of several-nanometer-scale π-conjugated systems for efficient intramolecular hopping charge transport remains a significant challenge. To construct localized electronic structures at the same energy in a molecule, a series of oligothiophenes, with lengths up to 10 nm and periodically twisted structures, was synthesized. Single-molecule conductance measurements of the twisted molecules revealed resistances lower than those of planar oligothiophenes. This study provides a rational molecular design to improve the intramolecular hopping charge transport in materials.
RESUMEN
We aimed to reveal the genetic features associated with MPZ variants in Japan. From April 2007 to August 2017, 64 patients with 23 reported MPZ variants and 21 patients with 17 novel MPZ variants were investigated retrospectively. Variation in MPZ variants and the pathogenicity of novel variants was examined according to the American College of Medical Genetics standards and guidelines. Age of onset, cranial nerve involvement, serum creatine kinase (CK), and cerebrospinal fluid (CSF) protein were also analyzed. We identified 64 CMT patients with reported MPZ variants. The common variants observed in Japan were different from those observed in other countries. We identified 11 novel pathogenic variants from 13 patients. Six novel MPZ variants in eight patients were classified as likely benign or uncertain significance. Cranial nerve involvement was confirmed in 20 patients. Of 30 patients in whom serum CK levels were evaluated, eight had elevated levels. Most of the patients had age of onset >20 years. In another subset of 30 patients, 18 had elevated CSF protein levels; four of these patients had spinal diseases and two had enlarged nerve root or cauda equina. Our results suggest genetic diversity across patients with MPZ variants.
Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Nervios Craneales , Predisposición Genética a la Enfermedad , Variación Genética , Proteína P0 de la Mielina/genética , Proteína P0 de la Mielina/metabolismo , Adolescente , Adulto , Edad de Inicio , Anciano , Proteínas del Líquido Cefalorraquídeo/análisis , Niño , Preescolar , Nervios Craneales/fisiología , Creatina Quinasa/análisis , Femenino , Humanos , Recién Nacido , Japón , Masculino , Persona de Mediana Edad , Mutación , Estudios Retrospectivos , Adulto JovenRESUMEN
Heterozygous mutations in the Berardinelli-Seip congenital lipodystrophy 2 (BSCL2) gene have been reported with different clinical phenotypes including Silver syndrome (SS)/spastic paraplegia 17 (SPG17), distal hereditary motor neuropathy type V (dHMN-V), and Charcot-Marie-Tooth (CMT) disease type 2. We screened 407 Japanese patients who were clinically suspected of having CMT by exome sequencing and searched mutations in BSCL2. As a result, we identified five patients with heterozygous mutations in BSCL2. We confirmed three cases of known mutations (p.N88S and p.S90L) and two cases of novel mutations (p.N88T and p.S141A). The clinical features of the cases with known mutations in Japan were similar to those previously reported in other countries. In particular, there were many cases with sensory disturbance. The case with p.N88T mutation showed severe phenotype such as early onset age and prominent vocal cord paresis. The case with p.S141A mutation showed characteristics of demyelinating neuropathy such as CMT disease type 1 by electrophysiological examination. In this article, we report the clinical features and spread of cases with BSCL2 mutation in a Japanese cohort.
Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Subunidades gamma de la Proteína de Unión al GTP/genética , Adolescente , Adulto , Niño , Femenino , Humanos , Japón , Persona de Mediana Edad , Mutación , Linaje , Adulto JovenRESUMEN
Mutations in the HADHB gene induce dysfunctions in the beta-oxidation of fatty acids and result in a MTP deficiency, which is characterized by clinical heterogeneity, such as cardiomyopathy and recurrent Leigh-like encephalopathy. In contrast, milder forms of HADHB mutations cause the later onset of progressive axonal peripheral neuropathy (approximately 50-80%) and myopathy with or without episodic myoglobinuria. The mechanisms linking neuronal defects in these diseases to the loss of HADHB function currently remain unclear. Drosophila has the CG4581 (dHADHB) gene as a single human HADHB homologue. We herein established pan-neuron-specific dHADHB knockdown flies and examined their phenotypes. The knockdown of dHADHB shortened the lifespan of flies, reduced locomotor ability and also limited learning abilities. These phenotypes were accompanied by an abnormal synapse morphology at neuromuscular junctions (NMJ) and reduction in both ATP and ROS levels in central nervous system (CNS). The Drosophila NMJ synapses are glutamatergic that is similar to those in the vertebrate CNS. The present results reveal a critical role for dHADHB in the morphogenesis and function of glutamatergic neurons including peripheral neurons. The dHADHB knockdown flies established herein provide a useful model for investigating the pathological mechanisms underlying neuropathies caused by a HADHB deficiency.
Asunto(s)
Técnicas de Silenciamiento del Gen , Discapacidades para el Aprendizaje/genética , Neuronas Motoras/patología , Unión Neuromuscular/genética , Animales , Animales Modificados Genéticamente/genética , Drosophila , Técnicas de Silenciamiento del Gen/métodos , Mutación/genética , Fenotipo , Sinapsis/genéticaRESUMEN
In the Siemens method, high-purity Si is produced by reducing SiHCl3 source gas with H2 ambient under atmospheric pressure. Since the pyrolysis of SiHCl3, which produces SiCl4 as a byproduct, occurs dominantly in the practical Siemens process, the Si yield is low (~30%). In the present study, we generated hydrogen radicals (H-radicals) at pressures greater than 1 atm using tungsten filaments and transported the H-radicals into a reactor. On the basis of the absorbance at 600 nm of WO3-glass exposed to H-radicals in the reactor, we observed that H-radicals with a density of ~1.1 × 1012 cm-3 were transported approximately 30 cm under 1 atm. When SiCl4 was supplied as a source into the reactor containing H-radicals and allowed to react at 850°C or 900°C, Si was produced more efficiently than in reactions conducted under H2 ambient. Because the H-radicals can effectively reduce SiCl4, which is a byproduct in the Siemens method, their use is expected to increase the Si yield for this method.
RESUMEN
OBJECTIVE : To identify the genetic characteristics in a large-scale of patients with Charcot-Marie-Tooth disease (CMT). METHODS: From May 2012 to August 2016, we collected 1005 cases with suspected CMT throughout Japan, whereas PMP22 duplication/deletion were excluded in advance for demyelinating CMT cases. We performed next-generation sequencing targeting CMT-related gene panels using Illumina MiSeq or Ion Proton, then analysed the gene-specific onset age of the identified cases and geographical differences in terms of their genetic spectrum. RESULTS : From 40 genes, we identified pathogenic or likely pathogenic variants in 301 cases (30.0%). The most common causative genes were GJB1 (n=66, 21.9%), MFN2 (n=66, 21.9%) and MPZ (n=51, 16.9%). In demyelinating CMT, variants were detected in 45.7% cases, and the most common reasons were GJB1 (40.3%), MPZ (27.1%), PMP22 point mutations (6.2%) and NEFL (4.7%). Axonal CMT yielded a relatively lower detection rate (22.9%), and the leading causes, occupying 72.4%, were MFN2 (37.2%), MPZ (9.0%), HSPB1 (8.3%), GJB1 (7.7%), GDAP1 (5.1%) and MME (5.1%). First decade of life was found as the most common disease onset period, and early-onset CMT cases were most likely to receive a molecular diagnosis. Geographical distribution analysis indicated distinctive genetic spectrums in different regions of Japan. CONCLUSIONS : Our results updated the genetic profile within a large-scale of Japanese CMT cases. Subsequent analyses regarding onset age and geographical distribution advanced our understanding of CMT, which would be beneficial for clinicians.
Asunto(s)
Pueblo Asiatico/genética , Enfermedad de Charcot-Marie-Tooth/genética , Perfil Genético , Adolescente , Adulto , Edad de Inicio , Anciano , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Enfermedad de Charcot-Marie-Tooth/epidemiología , Niño , Preescolar , Conexinas/genética , Femenino , GTP Fosfohidrolasas/genética , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico , Humanos , Lactante , Recién Nacido , Japón , Masculino , Persona de Mediana Edad , Proteínas Mitocondriales/genética , Chaperonas Moleculares , Proteína P0 de la Mielina/genética , Proteínas de la Mielina/genética , Proteínas del Tejido Nervioso/genética , Proteínas de Neurofilamentos/genética , Adulto Joven , Proteína beta1 de Unión ComunicanteRESUMEN
Several genes related to mitochondrial functions have been identified as causative genes of neuropathy or ataxia. Cytochrome c oxidase assembly factor 7 (COA7) may have a role in assembling mitochondrial respiratory chain complexes that function in oxidative phosphorylation. Here we identified four unrelated patients with recessive mutations in COA7 among a Japanese case series of 1396 patients with Charcot-Marie-Tooth disease (CMT) or other inherited peripheral neuropathies, including complex forms of CMT. We also found that all four patients had characteristic neurological features of peripheral neuropathy and ataxia with cerebellar atrophy, and some patients showed leukoencephalopathy or spinal cord atrophy on MRI scans. Validated mutations were located at highly conserved residues among different species and segregated with the disease in each family. Nerve conduction studies showed axonal sensorimotor neuropathy. Sural nerve biopsies showed chronic axonal degeneration with a marked loss of large and medium myelinated fibres. An immunohistochemical assay with an anti-COA7 antibody in the sural nerve from the control patient showed the positive expression of COA7 in the cytoplasm of Schwann cells. We also observed mildly elevated serum creatine kinase levels in all patients and the presence of a few ragged-red fibres and some cytochrome c oxidase-negative fibres in a muscle biopsy obtained from one patient, which was suggestive of subclinical mitochondrial myopathy. Mitochondrial respiratory chain enzyme assay in skin fibroblasts from the three patients showed a definitive decrease in complex I or complex IV. Immunocytochemical analysis of subcellular localization in HeLa cells indicated that mutant COA7 proteins as well as wild-type COA7 were localized in mitochondria, which suggests that mutant COA7 does not affect the mitochondrial recruitment and may affect the stability or localization of COA7 interaction partners in the mitochondria. In addition, Drosophila COA7 (dCOA7) knockdown models showed rough eye phenotype, reduced lifespan, impaired locomotive ability and shortened synaptic branches of motor neurons. Our results suggest that loss-of-function COA7 mutation is responsible for the phenotype of the presented patients, and this new entity of disease would be referred to as spinocerebellar ataxia with axonal neuropathy type 3.
Asunto(s)
Complejo IV de Transporte de Electrones/genética , Neuropatía Hereditaria Motora y Sensorial/complicaciones , Neuropatía Hereditaria Motora y Sensorial/genética , Mutación/genética , Ataxias Espinocerebelosas/complicaciones , Ataxias Espinocerebelosas/genética , Adolescente , Animales , Animales Modificados Genéticamente , Encéfalo/diagnóstico por imagen , Células Cultivadas , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Salud de la Familia , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Predisposición Genética a la Enfermedad/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Neuropatía Hereditaria Motora y Sensorial/diagnóstico por imagen , Humanos , Discos Imaginales/metabolismo , Discos Imaginales/ultraestructura , Locomoción/efectos de los fármacos , Locomoción/genética , Masculino , Persona de Mediana Edad , Neuronas Motoras/patología , Unión Neuromuscular/genética , Unión Neuromuscular/patología , Unión Neuromuscular/ultraestructura , Desempeño Psicomotor/fisiología , Interferencia de ARN/fisiología , Médula Espinal/diagnóstico por imagen , Ataxias Espinocerebelosas/diagnóstico por imagen , Adulto JovenRESUMEN
SH3TC2, known as the causative gene of autosomal recessive demyelinating Charcot-Marie-Tooth type 4C (CMT4C), was also found linked to a mild mononeuropathy of the median nerve with an autosomal dominant inheritance pattern. Using DNA microarray, Illumina MiSeq, and Ion proton, we carried out gene panel sequencing among 1483 Japanese CMT patients, containing 397 patients with demyelinating CMT. From seven patients with demyelinating CMT, we identified eight recessive variants in the SH3TC2 gene, consisting of five novel (pathogenic/likely pathogenic) and three reported variants. Additionally, from two patients with axonal CMT, we detected a reported recessive variant, p.Arg77Trp, which was herein reclassified as variant with unknown significance. Of the seven CMT4C patients (six females and one male), 2/7 patients developed symptoms at their first decade, and 5/7 patients lost their ambulation around age 50. Scoliosis was observed from more than half (4/7) of these patients, whereas hearing loss is the most common symptom of central nervous system (6/7). No median nerve mononeuropathy was recorded from their family members. We identified recessive variants in SH3TC2 from 1.76% of demyelinating CMT patients. An uncommon gender difference was recognized and the wild spectrum of these variants suggests mutational diversity of SH3TC2 in Japan.
Asunto(s)
Genes Recesivos , Estudios de Asociación Genética , Mutación , Fenotipo , Proteínas/genética , Adolescente , Adulto , Anciano , Alelos , Sustitución de Aminoácidos , Biopsia , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Enfermedad de Charcot-Marie-Tooth/genética , Niño , Análisis Mutacional de ADN , Femenino , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Péptidos y Proteínas de Señalización Intracelular , Japón , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Conducción Nerviosa , Linaje , Análisis de Secuencia de ADN , Adulto JovenRESUMEN
Mutations in small heat shock protein beta-1 (HspB1) have been linked to Charcot-Marie-Tooth (CMT) disease type 2F and distal hereditary motor neuropathy type 2B. Only four cases with HSPB1 mutations have been reported to date in Japan. In this study between April 2007 and October 2014, we conducted gene panel sequencing in a case series of 1,030 patients with inherited peripheral neuropathies (IPNs) using DNA microarray, targeted resequencing, and whole-exome sequencing. We identified HSPB1 variants in 1.3% (13 of 1,030) of the patients with IPNs, who exhibited a male predominance. Based on neurological and electrophysiological findings, seven patients were diagnosed with CMT disease type 2F, whereas the remaining six patients were diagnosed with distal hereditary motor neuropathy type 2B. P39L, R127W, S135C, R140G, K141Q, T151I, and P182A mutations identified in 12 patients were described previously, whereas a novel K123* variant with unknown significance was found in 1 patient. Diabetes and impaired glucose tolerance were detected in 6 of the 13 patients. Our findings suggest that HSPB1 mutations result in two phenotypes of inherited neuropathies and extend the phenotypic spectrum of HSPB1-related disorders.
Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Proteínas de Choque Térmico HSP27/genética , Atrofia Muscular Espinal/genética , Anciano , Femenino , Proteínas de Choque Térmico , Humanos , Japón , Masculino , Persona de Mediana Edad , Chaperonas Moleculares , Mutación , LinajeRESUMEN
Immunoglobulin helicase µ-binding protein 2 (IGHMBP2) gene is responsible for Charcot-Marie-Tooth disease (CMT) type 2S and spinal muscular atrophy with respiratory distress type 1 (SMARD1). From June 2014 to December 2015, we collected 408 cases, who referred to our genetic laboratory for genetic analysis, suspected with CMT disease or other inherited peripheral neuropathies (IPNs) on the basis of clinical manifestations and electrophysiological studies. Mutation screening was performed using Ion AmpliSeq Custom Panels, which comprise 72 disease-causing or candidate genes of IPNs. We identified novel homozygous or compound heterozygous variants of IGHMBP2 in four patients. Three patients presented with childhood-onset axonal predominant sensorimotor polyneuropathies, whereas the other case was diagnosed with SMARD1, manifesting as low birth weight, weak cry, reduced spontaneous movement and developed respiratory distress 4 months after birth. We present the original report of CMT type 2S in Japan, and illustrate that recessive IGHMBP2 variants account for ~1.6% of axonal CMT in our cohort.
Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Proteínas de Unión al ADN/genética , Atrofia Muscular Espinal/genética , Enfermedades del Sistema Nervioso Periférico/genética , Síndrome de Dificultad Respiratoria del Recién Nacido/genética , Factores de Transcripción/genética , Adolescente , Adulto , Edad de Inicio , Anciano , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Preescolar , Femenino , Homocigoto , Humanos , Lactante , Recién Nacido , Japón , Masculino , Atrofia Muscular Espinal/fisiopatología , Mutación , Linaje , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Síndrome de Dificultad Respiratoria del Recién Nacido/fisiopatologíaRESUMEN
OBJECTIVE: The objective of this study was to identify new causes of Charcot-Marie-Tooth (CMT) disease in patients with autosomal-recessive (AR) CMT. METHODS: To efficiently identify novel causative genes for AR-CMT, we analyzed 303 unrelated Japanese patients with CMT using whole-exome sequencing and extracted recessive variants/genes shared among multiple patients. We performed mutation screening of the newly identified membrane metalloendopeptidase (MME) gene in 354 additional patients with CMT. We clinically, genetically, pathologically, and radiologically examined 10 patients with the MME mutation. RESULTS: We identified recessive mutations in MME in 10 patients. The MME gene encodes neprilysin (NEP), which is well known to be one of the most prominent beta-amyloid (Aß)-degrading enzymes. All patients had a similar phenotype consistent with late-onset axonal neuropathy. They showed muscle weakness, atrophy, and sensory disturbance in the lower extremities. All the MME mutations could be loss-of-function mutations, and we confirmed a lack/decrease of NEP protein expression in a peripheral nerve. No patients showed symptoms of dementia, and 1 patient showed no excess Aß in Pittsburgh compound-B positron emission tomography imaging. INTERPRETATION: Our results indicate that loss-of-function MME mutations are the most frequent cause of adult-onset AR-CMT2 in Japan, and we propose that this new disease should be termed AR-CMT2T. A loss-of-function MME mutation did not cause early-onset Alzheimer's disease. Identifying the MME mutation responsible for AR-CMT could improve the rate of molecular diagnosis and the understanding of the molecular mechanisms of CMT.
Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Neprilisina/genética , Anciano , Exoma , Femenino , Genes Recesivos , Humanos , Japón , Masculino , Persona de Mediana Edad , Mutación , FenotipoRESUMEN
Charcot-Marie-Tooth disease (CMT) constitutes a heterogeneous group affecting motor and sensory neurons in the peripheral nervous system. MFN2 mutations are the most common cause of axonal CMT. We describe the clinical and mutational spectra of CMT patients harboring MFN2 mutations in Japan. We analyzed 1,334 unrelated patients with clinically suspected CMT referred by neurological and neuropediatric departments throughout Japan. We conducted mutation screening using a DNA microarray, targeted resequencing, and whole-exome sequencing. We identified pathogenic or likely pathogenic MFN2 variants from 79 CMT patients, comprising 44 heterozygous and 1 compound heterozygous variants. A total of 15 novel variants were detected. An autosomal dominant family history was determined in 43 cases, and the remaining 36 cases were reported as sporadic with no family history. The mean onset age of CMT in these patients was 12 ± 14 (range 0-59) years. We observed neuropathic symptoms in all patients. Some had optic atrophy, vocal cord paralysis, or spasticity. We detected a compound heterozygous MFN2 mutation in a patient with a severe phenotype and the co-occurrence of MFN2 and PMP22 mutations in a patient with an uncommon phenotype. MFN2 is the most frequent causative gene of CMT2 in Japan. We present 15 novel variants and broad clinical and mutational spectra of Japanese MFN2-related CMT patients. Regardless of the onset age and inheritance pattern, MFN2 gene analysis should be performed. Combinations of causative genes should be considered to explain the phenotypic diversity.