Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Toxins (Basel) ; 11(9)2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31489876

RESUMEN

Antimicrobial peptides (AMPs) are small molecules, which have a potential use as antibiotic or pharmacological tools. In chelicerate organisms, such as scorpions, these molecules constitute an alternative defense system against microorganisms. The aim of this work was to identify AMPs in the hemolymph of the Tityus serrulatus scorpion. Fractions of plasma and hemocytes were subjected to high-performance liquid chromatography (HPLC) and then analyzed to determine their activity in inhibiting microbial growth. One of the fractions from the hemocytes presents antimicrobial activity against microorganisms, such as Gram-negative and Gram-positive bacteria, fungi, and yeast. These fractions were analyzed by mass spectrometry, and a fragment of 3564 Da. was identified. The peptide was called serrulin, because it is derived from the species T. serrulatus. A comparison of the amino acid sequence of serrulin with databases shows that it has a similarity to the glycine-rich peptides described in Cupienius salai and Acanthoscurria gomesiana (spiders). Furthermore, serrulin has no hemolytic activity against human erythrocytes. While the presence of AMPs in T. serrulatus venom has been described in other works, this is the first work to characterize the presence of these molecules in the hemolymph (hemocytes) of this species and show its potential use as an alternative to conventional antibiotics against different species of microorganisms.


Asunto(s)
Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Adulto , Secuencia de Aminoácidos , Animales , Antiinfecciosos/química , Péptidos Catiónicos Antimicrobianos/química , Aspergillus niger/efectos de los fármacos , Aspergillus niger/crecimiento & desarrollo , Candida albicans/efectos de los fármacos , Candida albicans/crecimiento & desarrollo , Eritrocitos/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Glicina , Hemolinfa , Humanos , Micrococcus luteus/efectos de los fármacos , Micrococcus luteus/crecimiento & desarrollo , Escorpiones
2.
Int J Biol Macromol, v. 253, n. 6, 127279, dez, 2023
Artículo en Inglés | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: bud-5144

RESUMEN

Snakebite envenomation is classified as a Neglected Tropical Disease. Bothrops jararaca venom induces kidney injury and coagulopathy. HF3, a hemorrhagic metalloproteinase of B. jararaca venom, participates in the envenomation pathogenesis. We evaluated the effects of HF3 in mouse kidney and blood plasma after injection in the thigh muscle, mimicking a snakebite. Transcriptomic analysis showed differential expression of 31 and 137 genes related to kidney pathology after 2 h and 6 h, respectively. However, only subtle changes were observed in kidney proteome, with differential abundance of 15 proteins after 6 h, including kidney injury markers. N-terminomic analysis of kidney proteins showed 420 proteinase-generated peptides compatible with meprin specificity, indicating activation of host proteinases. Plasma analysis revealed differential abundance of 90 and 219 proteins, respectively, after 2 h and 6 h, including coagulation-cascade and complement-system components, and creatine-kinase, whereas a semi-specific search of N-terminal peptides indicated activation of endogenous proteinases. HF3 promoted host reactions, altering the gene expression and the proteolytic profile of kidney tissue, and inducing plasma proteome imbalance driven by changes in abundance and proteolysis. The overall response of the mouse underscores the systemic action of a hemorrhagic toxin that transcends local tissue damage and is related to known venom-induced systemic effects.

3.
J Proteome Res, v. 21, p. 2783-2797, out. 2022
Artículo en Inglés | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: bud-4567

RESUMEN

Acanthoscurria juruenicola is an Amazonian spider described for the first time almost a century ago. However, little is known about their venom composition. Here, we present a multiomics characterization of A. juruenicola venom by a combination of transcriptomics, proteomics, and peptidomics approaches. Transcriptomics of female venom glands resulted in 93,979 unique assembled mRNA transcript encoding proteins. A total of 92 proteins were identified in the venom by mass spectrometry, including 14 mature cysteine-rich peptides (CRPs). Quantitative analysis showed that CRPs, cysteine-rich secretory proteins, metalloproteases, carbonic anhydrases, and hyaluronidase comprise >90% of the venom proteome. Relative quantification of venom toxins was performed by DIA and DDA, revealing converging profiles of female and male specimens by both methods. Biochemical assays confirmed the presence of active hyaluronidases, phospholipases, and proteases in the venom. Moreover, the venom promoted in vivo paralytic activities in crickets, consistent with the high concentration of CRPs. Overall, we report a comprehensive analysis of the arsenal of toxins of A. juruenicola and highlight their potential biotechnological and pharmacological applications. Mass spectrometry data were deposited to the ProteomeXchange Consortium via the PRIDE repository with the dataset identifier PXD013149 and via the MassIVE repository with the dataset identifier MSV000087777.

4.
Virology ; 541: 13-24, 2020.
Artículo en Inglés | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: but-ib17326

RESUMEN

HIV-1 genetic diversity evolution was deeply characterized during the first year of infection among recently-infected patients using deep sequencing technology and correlated with disease progression surrogate markers. RNA and DNA samples from twenty-five individuals (13 female) encoding the protease and reverse transcriptase regions of the pol gene, and the V3 region of the env gene were evaluated at recent infection and during established infection. Infection by a unique HIV-1 strain was inferred in 70.1% of the individuals, with no differences between genders. Infections by multiple strains were associated with higher viral loads and faster CD4+ T cell declines. Either low or high levels of viral loads accompanied low levels of genetic diversity and lower selective pressure. With massive sequence data from 3 distinct genomic HIV-1 regions from plasma and PBMCs over time, we propose a model for HIV-1 genetic diversity, which correlates to basal viral loads of patients.

5.
Toxin Rev, v. 41, n.2, p. 370-379, fev. 2021
Artículo en Inglés | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: bud-3622

RESUMEN

Spiders are the most successful and diversified group of venomous animals. Currently, there are more than 49,000 species distributed almost all over the world. This broad distribution suggests that they have efficient strategies to improve their survival; one of them is the production of highly elaborate venoms, which are a heterogeneous mixture of molecules like inorganic salts, peptides, proteins, and enzymes. Considering this, this study aimed to analyze the venom of the spider Avicularia juruensis (Mygalomorphae: Theraphosidae) searching for proteolytic enzymes. Using zymography, electrophoresis, transcriptomics and proteomics approaches we identified one neprilysin able to degrade casein, that we named “Ajur_Neprilysin”. Neprilysins are metalloendopeptidases whose presence has already been described in animal venoms, however, its function has not yet been elucidated. Our results showed for the first time one non-bacterial neprilysin which can cleave casein and suggest that its role in envenomation is to degrade the extracellular matrix, facilitating the access of other toxins to their targets, as well as digestive fluids. Moreover, this discovery contributes to increasing the knowledge about little-studied species, since the Ajur_Neprilysin is the second neprilysin found in the venom from a mygalomorph spider.

6.
Toxins (Basel) ; 8(12)2016 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-27886129

RESUMEN

The number of cases of envenomation by scorpions has grown significantly in Brazil since 2007, with the most severe cases being caused by the Tityus serrulatus scorpion. Although envenomed patients mostly suffer neurotoxic manifestations, other symptoms, such as hypertension, cannot be exclusively attributed to neurotoxins. Omics analyses have detected plentiful amounts of metalloproteases in T. serrulatus venom. However, the roles played by these enzymes in envenomation are still unclear. Endeavoring to investigate the functions of scorpion venom proteases, we describe here for the first time an Angiotensin I-Converting Enzyme-like peptidase (ACE-like) purified from T. serrulatus venom. The crude venom cleaved natural and fluorescent substrates and these activities were inhibited by captopril. Regarding the serum neutralization, the scorpion antivenom was more effective at blocking the ACE-like activity than arachnid antivenom, although neither completely inhibited the venom cleavage action, even at higher doses. ACE-like was purified from the venom after three chromatographic steps and its identity was confirmed by mass spectrometric and transcriptomic analyses. Bioinformatics analysis showed homology between the ACE-like transcript sequences from Tityus spp. and human testis ACE. These findings advance our understanding of T. serrulatus venom components and may improve treatment of envenomation victims, as ACE-like may contribute to envenomation symptoms, especially the resulting hypertension.


Asunto(s)
Péptido Hidrolasas/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Venenos de Escorpión/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Antivenenos/farmacología , Captopril/farmacología , Cloruros/farmacología , Hipertensión/metabolismo , Escorpiones
7.
Toxins, v. 13, n. 12, 858, dez. 2021
Artículo en Inglés | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: bud-4054

RESUMEN

Among the Chilopoda class of centipede, the Cryptops genus is one of the most associated with envenomation in humans in the metropolitan region of the state of São Paulo. To date, there is no study in the literature about the toxins present in its venom. Thus, in this work, a transcriptomic characterization of the Cryptops iheringi venom gland, as well as a proteomic analysis of its venom, were performed to obtain a toxin profile of this species. These methods indicated that 57.9% of the sequences showed to be putative toxins unknown in public databases; among them, we pointed out a novel putative toxin named Cryptoxin-1. The recombinant form of this new toxin was able to promote edema in mice footpads with massive neutrophils infiltration, linking this toxin to envenomation symptoms observed in accidents with humans. Our findings may elucidate the role of this toxin in the venom, as well as the possibility to explore other proteins found in this work.

8.
Sci Rep, v. 11, 1995, jan. 2021
Artículo en Inglés | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: bud-3484

RESUMEN

The joint disease called pararamosis is an occupational disease caused by accidental contact with bristles of the caterpillar Premolis semirufa. The chronic inflammatory process narrows the joint space and causes alterations in bone structure and cartilage degeneration, leading to joint stiffness. Aiming to determine the bristle components that could be responsible for this peculiar envenomation, in this work we have examined the toxin composition of the caterpillar bristles extract and compared it with the differentially expressed genes (DEGs) in synovial biopsies of patients affected with rheumatoid arthritis (RA) and osteoarthritis (OA). Among the proteins identified, 129 presented an average of 63% homology with human proteins and shared important conserved domains. Among the human homologous proteins, we identified seven DEGs upregulated in synovial biopsies from RA or OA patients using meta-analysis. This approach allowed us to suggest possible toxins from the pararama bristles that could be responsible for starting the joint disease observed in pararamosis. Moreover, the study of pararamosis, in turn, may lead to the discovery of specific pharmacological targets related to the early stages of articular diseases.

9.
Open Biol. ; 10: 190258, 2020.
Artículo en Inglés | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: but-ib17579

RESUMEN

Haemocyanins (Hcs) are copper-containing, respiratory proteins that occur in the haemolymph of many arthropod species. Here, we report the presence of Hcs in the chilopode Myriapoda, demonstrating that these proteins are more widespread among the Arthropoda than previously thought. The analysis of transcriptome of S. subspinipes subpinipes reveals the presence of two distinct subunits of Hc, where the signal peptide is present, and six of prophenoloxidase (PPO), where the signal peptide is absent, in the 75 kDa range. Size exclusion chromatography profiles indicate different quaternary organization for Hc of both species, which was corroborated by TEM analysis: S. viridicornis Hc is a 6 × 6-mer and S. subspinipes Hc is a 3 × 6-mer, which resembles the half-structure of the 6 × 6-mer but also includes the presence of phenoloxidases, since the 1 × 6-mer quaternary organization is commonly associated with hexamers of PPO. Studies with Chelicerata showed that PPO activity are exclusively associated with the Hcs. This study indicates that Scolopendra may have different proteins playing oxygen transport (Hc) and PO function, both following the hexameric oligomerization observed in Hcs.

10.
Sci. Rep. ; 10: 6388, 2020.
Artículo en Inglés | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: but-ib17607

RESUMEN

We have investigated Amblyomin-X-treated horse melanomas to better understand its mode of action through transcriptome analysis and the in vivo model. Amblyomin-X is a Kunitz-type homologous protein that selectively leads to the death of tumor cells via ER stress and apoptosis, currently under investigation as a new drug candidate for cancer treatment. Melanomas are immunogenic tumors, and a better understanding of the immune responses is warranted. Equine melanomas are spontaneous and not so aggressive as human melanomas are, as this study shows that the in vivo treatment of encapsulated horse melanoma tumors led to a significant reduction in the tumor size or even the complete disappearance of the tumor mass through intratumoral injections of Amblyomin-X. Transcriptome analysis identified ER- and mitochondria-stress, modulation of the innate immune system, apoptosis, and possibly immunogenic cell death activation. Interactome analysis showed that Amblyomin-X potentially interacts with key elements found in transcriptomics. Taken together, Amblyomin-X modulated the tumor immune microenvironment in different ways, at least contributing to induce tumor cell death.

11.
Toxins ; 11(9): 517, 2019.
Artículo en Inglés | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: but-ib17207

RESUMEN

Antimicrobial peptides (AMPs) are small molecules, which have a potential use as antibiotic or pharmacological tools. In chelicerate organisms, such as scorpions, these molecules constitute an alternative defense system against microorganisms. The aim of this work was to identify AMPs in the hemolymph of the Tityus serrulatus scorpion. Fractions of plasma and hemocytes were subjected to high-performance liquid chromatography (HPLC) and then analyzed to determine their activity in inhibiting microbial growth. One of the fractions from the hemocytes presents antimicrobial activity against microorganisms, such as Gram-negative and Gram-positive bacteria, fungi, and yeast. These fractions were analyzed by mass spectrometry, and a fragment of 3564 Da. was identified. The peptide was called serrulin, because it is derived from the species T. serrulatus. A comparison of the amino acid sequence of serrulin with databases shows that it has a similarity to the glycine-rich peptides described in Cupienius salai and Acanthoscurria gomesiana (spiders). Furthermore, serrulin has no hemolytic activity against human erythrocytes. While the presence of AMPs in T. serrulatus venom has been described in other works, this is the first work to characterize the presence of these molecules in the hemolymph (hemocytes) of this species and show its potential use as an alternative to conventional antibiotics against different species of microorganisms.

12.
Toxins ; 11(8): 448, 2019.
Artículo en Inglés | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: but-ib17180

RESUMEN

nt species have specialized venom systems developed to sting and inoculate a biological cocktail of organic compounds, including peptide and polypeptide toxins, for the purpose of predation and defense. The genus Dinoponera comprises predatory giant ants that inoculate venom capable of causing long-lasting local pain, involuntary shaking, lymphadenopathy, and cardiac arrhythmias, among other symptoms. To deepen our knowledge about venom composition with regard to protein toxins and their roles in the chemical–ecological relationship and human health, we performed a bottom-up proteomics analysis of the crude venom of the giant ant D. quadriceps, popularly known as the "false" tocandiras. For this purpose, we used two different analytical approaches: (i) gel-based proteomics approach, wherein the crude venom was resolved by denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and all protein bands were excised for analysis; (ii) solution-based proteomics approach, wherein the crude venom protein components were directly fragmented into tryptic peptides in solution for analysis. The proteomic data that resulted from these two methodologies were compared against a previously annotated transcriptomic database of D. quadriceps, and subsequently, a homology search was performed for all identified transcript products. The gel-based proteomics approach unequivocally identified nine toxins of high molecular mass in the venom, as for example, enzymes [hyaluronidase, phospholipase A1, dipeptidyl peptidase and glucose dehydrogenase/flavin adenine dinucleotide (FAD) quinone] and diverse venom allergens (homologous of the red fire ant Selenopsis invicta) and venom-related proteins (major royal jelly-like). Moreover, the solution-based proteomics revealed and confirmed the presence of several hydrolases, oxidoreductases, proteases, Kunitz-like polypeptides, and the less abundant inhibitor cysteine knot (ICK)-like (knottin) neurotoxins and insect defensin. Our results showed that the major components of the D. quadriceps venom are toxins that are highly likely to damage cell membranes and tissue, to cause neurotoxicity, and to induce allergic reactions, thus, expanding the knowledge about D. quadriceps venom composition and its potential biological effects on prey and victims.

13.
Virology, v. 541, p. 13-24, fev. 2020
Artículo en Inglés | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: bud-2901

RESUMEN

HIV-1 genetic diversity evolution was deeply characterized during the first year of infection among recently-infected patients using deep sequencing technology and correlated with disease progression surrogate markers. RNA and DNA samples from twenty-five individuals (13 female) encoding the protease and reverse transcriptase regions of the pol gene, and the V3 region of the env gene were evaluated at recent infection and during established infection. Infection by a unique HIV-1 strain was inferred in 70.1% of the individuals, with no differences between genders. Infections by multiple strains were associated with higher viral loads and faster CD4+ T cell declines. Either low or high levels of viral loads accompanied low levels of genetic diversity and lower selective pressure. With massive sequence data from 3 distinct genomic HIV-1 regions from plasma and PBMCs over time, we propose a model for HIV-1 genetic diversity, which correlates to basal viral loads of patients.

14.
Front Pharmacol ; 11: 1075, 2020.
Artículo en Inglés | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: bud-3130

RESUMEN

The Araneae order is considered one of the most successful groups among venomous animals in the world. An important factor for this success is the production of venoms, a refined biological fluid rich in proteins, short peptides and cysteine-rich peptides (CRPs). These toxins may present pharmacologically relevant biological actions, as antimicrobial, antiviral and anticancer activities, for instance. Therefore, there is an increasing interest in the exploration of venom toxins for therapeutic reasons, such as drug development. However, the process of peptide sequencing and mainly the evaluation of potential biological activities of these peptides are laborious, considering the low yield of venom extraction and the high variability of toxins present in spider venoms. Here we show a robust methodology for identification, sequencing, and initial screening of potential bioactive peptides found in the venom of Acanthoscurria rondoniae. This methodology consists in a multiomics approach involving proteomics, peptidomics and transcriptomics analyses allied to in silico predictions of antibacterial, antifungal, antiviral, and anticancer activities. Through the application of this strategy, a total of 92,889 venom gland transcripts were assembled and 84 novel toxins were identified at the protein level, including seven short peptides and 10 fully sequenced CRPs (belonging to seven toxin families). In silico analysis suggests that seven CRPs families may have potential antimicrobial or antiviral activities, while two CRPs and four short peptides are potentially anticancer. Taken together, our results demonstrate an effective multiomics strategy for the discovery of new toxins and in silico screening of potential bioactivities. This strategy may be useful in toxin discovery, as well as in the screening of possible activities for the vast diversity of molecules produced by venomous animals.

15.
Open Biol, v. 10, n. 4, 190258, abr. 2020
Artículo en Inglés | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: bud-2995

RESUMEN

Haemocyanins (Hcs) are copper-containing, respiratory proteins that occur in the haemolymph of many arthropod species. Here, we report the presence of Hcs in the chilopode Myriapoda, demonstrating that these proteins are more widespread among the Arthropoda than previously thought. The analysis of transcriptome of S. subspinipes subpinipes reveals the presence of two distinct subunits of Hc, where the signal peptide is present, and six of prophenoloxidase (PPO), where the signal peptide is absent, in the 75 kDa range. Size exclusion chromatography profiles indicate different quaternary organization for Hc of both species, which was corroborated by TEM analysis: S. viridicornis Hc is a 6 × 6-mer and S. subspinipes Hc is a 3 × 6-mer, which resembles the half-structure of the 6 × 6-mer but also includes the presence of phenoloxidases, since the 1 × 6-mer quaternary organization is commonly associated with hexamers of PPO. Studies with Chelicerata showed that PPO activity are exclusively associated with the Hcs. This study indicates that Scolopendra may have different proteins playing oxygen transport (Hc) and PO function, both following the hexameric oligomerization observed in Hcs.

16.
PLoS Pathog. ; 15(6): e1007880, 2019.
Artículo en Inglés | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: but-ib17136

RESUMEN

The largest ever recorded epidemic of the Chikungunya virus (CHIKV) broke out in 2004 and affected four continents. Acute symptomatic infections are typically associated with the onset of fever and often debilitating polyarthralgia/polyarthritis. In this study, a systems biology approach was adopted to analyze the blood transcriptomes of adults acutely infected with the CHIKV. Gene signatures that were associated with viral RNA levels and the onset of symptoms were identified. Among these genes, the putative role of the Eukaryotic Initiation Factor (eIF) family genes and apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC3A) in the CHIKV replication process were displayed. We further compared these signatures with signatures induced by the Dengue virus infection and rheumatoid arthritis. Finally, we demonstrated that the CHIKV in vitro infection of murine bone marrow-derived macrophages induced IL-1 beta production in a mechanism that is significantly dependent on the inflammasome NLRP3 activation. The observations provided valuable insights into virus-host interactions during the acute phase and can be instrumental in the investigation of new and effective therapeutic interventions.

17.
Funct Integr Genomics ; 19(1): p. 151-169, 2019.
Artículo en Inglés | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: but-ib15784

RESUMEN

Coffea arabica L. is an important agricultural commodity, accounting for 60% of traded coffee worldwide. Nitrogen (N) is a macronutrient that is usually limiting to plant yield; however, molecular mechanisms of plant acclimation to N limitation remain largely unknown in tropical woody crops. In this study, we investigated the transcriptome of coffee roots under N starvation, analyzing poly-A+ libraries and small RNAs. We also evaluated the concentration of selected amino acids and N-source preferences in roots. Ammonium was preferentially taken up over nitrate, and asparagine and glutamate were the most abundant amino acids observed in coffee roots. We obtained 34,654 assembled contigs by mRNA sequencing, and validated the transcriptional profile of 12 genes by RT-qPCR. Illumina small RNA sequencing yielded 8,524,332 non-redundant reads, resulting in the identification of 86 microRNA families targeting 253 genes. The transcriptional pattern of eight miRNA families was also validated. To our knowledge, this is the first catalog of differentially regulated amino acids, N sources, mRNAs, and sRNAs in Arabica coffee roots.

18.
Sci Rep, v. 10, 6388, abr. 2020
Artículo en Inglés | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: bud-3009

RESUMEN

We have investigated Amblyomin-X-treated horse melanomas to better understand its mode of action through transcriptome analysis and the in vivo model. Amblyomin-X is a Kunitz-type homologous protein that selectively leads to the death of tumor cells via ER stress and apoptosis, currently under investigation as a new drug candidate for cancer treatment. Melanomas are immunogenic tumors, and a better understanding of the immune responses is warranted. Equine melanomas are spontaneous and not so aggressive as human melanomas are, as this study shows that the in vivo treatment of encapsulated horse melanoma tumors led to a significant reduction in the tumor size or even the complete disappearance of the tumor mass through intratumoral injections of Amblyomin-X. Transcriptome analysis identified ER- and mitochondria-stress, modulation of the innate immune system, apoptosis, and possibly immunogenic cell death activation. Interactome analysis showed that Amblyomin-X potentially interacts with key elements found in transcriptomics. Taken together, Amblyomin-X modulated the tumor immune microenvironment in different ways, at least contributing to induce tumor cell death.

19.
Toxins, v. 11, n. 9, p. 517, sep. 2019
Artículo en Inglés | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: bud-2841

RESUMEN

Antimicrobial peptides (AMPs) are small molecules, which have a potential use as antibiotic or pharmacological tools. In chelicerate organisms, such as scorpions, these molecules constitute an alternative defense system against microorganisms. The aim of this work was to identify AMPs in the hemolymph of the Tityus serrulatus scorpion. Fractions of plasma and hemocytes were subjected to high-performance liquid chromatography (HPLC) and then analyzed to determine their activity in inhibiting microbial growth. One of the fractions from the hemocytes presents antimicrobial activity against microorganisms, such as Gram-negative and Gram-positive bacteria, fungi, and yeast. These fractions were analyzed by mass spectrometry, and a fragment of 3564 Da. was identified. The peptide was called serrulin, because it is derived from the species T. serrulatus. A comparison of the amino acid sequence of serrulin with databases shows that it has a similarity to the glycine-rich peptides described in Cupienius salai and Acanthoscurria gomesiana (spiders). Furthermore, serrulin has no hemolytic activity against human erythrocytes. While the presence of AMPs in T. serrulatus venom has been described in other works, this is the first work to characterize the presence of these molecules in the hemolymph (hemocytes) of this species and show its potential use as an alternative to conventional antibiotics against different species of microorganisms.

20.
J. Antimicrob. Chemother. ; 73(7): p. 1930-1934, 2018.
Artículo en Inglés | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: but-ib15307

RESUMEN

Objectives: The presence of minority transmitted drug resistance mutations was assessed using ultra-deep sequencing and correlated with disease progression among recently HIV-1-infected individuals from Brazil. Methods: Samples at baseline during recent infection and 1 year after the establishment of the infection were analysed. Viral RNA and proviral DNA from 25 individuals were subjected to ultra-deep sequencing of the reverse transcriptase and protease regions of HIV-1. Results: Viral strains carrying transmitted drug resistance mutations were detected in 9 out of the 25 patients, for all major antiretroviral classes, ranging from one to five mutations per patient. Ultra-deep sequencing detected strains with frequencies as low as 1.6% and only strains with frequencies.20% were detected by population plasma sequencing (three patients). Transmitted drug resistance strains with frequencies,14.8% did not persist upon established infection. The presence of transmitted drug resistance mutations was negatively correlated with the viral load and with CD4+T cell count decay. Conclusions: Transmitted drug resistance mutations representing small percentages of the viral population do not persist during infection because they are negatively selected in the first year after HIV-1 seroconversion.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda