Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nanoscale Adv ; 5(19): 5263-5275, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37767029

RESUMEN

Cellulose nanofibers (CNFs) were employed in the aqueous electrodeposition of nickel and cadmium for battery metal recycling. The electrowinning of mixed Ni-Cd metal ion recycling solutions demonstrated that cadmium with a purity of over 99% could be selectively extracted while leaving the nickel in the solution. Two types of CNFs were evaluated: negatively charged CNFs (a-CNF) obtained through acid hydrolysis (-75 µeq. g-1) and positively charged CNFs (q-CNF) functionalized with quaternary ammonium groups (+85 µeq. g-1). The inclusion of CNFs in the Ni-Cd electrolytes induced growth of cm-sized dendrites in conditions where dendrites were otherwise not observed, or increased the degree of dendritic growth when it was already present to a lesser extent. The augmented dendritic growth correlated with an increase in deposition yields of up to 30%. Additionally, it facilitated the formation of easily detachable dendritic structures, enabling more efficient processing on a large scale and enhancing the recovery of the toxic cadmium metal. Regardless of the charged nature of the CNFs, both negatively and positively charged CNFs led to a significant formation of protruding cadmium dendrites. When deposited separately, dendritic growth and increased deposition yields remained consistent for the cadmium metal. However, dendrites were not observed during the deposition of nickel; instead, uniformly deposited layers were formed, albeit at lower yields (20%), when positively charged CNFs were present. This paper explores the potential of utilizing cellulose and its derivatives as the world's largest biomass resource to enhance battery metal recycling processes.

2.
RSC Adv ; 11(55): 34599-34604, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-35494732

RESUMEN

Polyetherimide (PEI) was used for coating copper substrates via electrophoretic deposition (EPD) for electrical insulation. Different substrate preparation and electrical field application techniques were compared, demonstrating that the use of a pulsed voltage of 20 V allowed for the best formation of insulating coatings in the 2-6 µm thickness range. The results indicate that pulsed EPD is the best technique to effectively coat conductive substrates with superior surface finish coatings that could pass a dielectric withstand test at 10 kV mm-1, which is of importance within the EV automotive industry.

3.
Nanoscale ; 9(27): 9562-9571, 2017 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-28664948

RESUMEN

The electrical conductivity of reduced graphene oxide (rGO) obtained from graphene oxide (GO) using sodium borohydride (NaBH4) as a reducing agent has been investigated as a function of time (2 min to 24 h) and temperature (20 °C to 80 °C). Using a 300 mM aqueous NaBH4 solution at 80 °C, reduction of GO occurred to a large extent during the first 10 min, which yielded a conductivity increase of 5 orders of magnitude to 10 S m-1. During the residual 1400 min of reaction, the reduction rate decreased significantly, eventually resulting in a rGO conductivity of 1500 S m-1. High resolution XPS measurements showed that C/O increased from 2.2 for the GO to 6.9 for the rGO at the longest reaction times, due to the elimination of oxygen. The steep increase in conductivity recorded during the first 8-12 min of reaction was mainly due to the reduction of C-O (e.g., hydroxyl and epoxy) groups, suggesting the preferential attack of the reducing agent on C-O rather than C[double bond, length as m-dash]O groups. In addition, the specular variation of the percentage content of C-O bond functionalities with the sum of Csp2 and Csp3 indicated that the reduction of epoxy or hydroxyl groups had a greater impact on the restoration of the conductive nature of the graphite structure in rGO. These findings were reflected in the dramatic change in the structural stability of the rGO nanofoams produced by freeze-drying. The reduction protocol in this study allowed to achieve the highest conductivity values reported so far for the aqueous reduction of graphene oxide mediated by sodium borohydride. The 4-probe sheet resistivity approach used to measure the electrical conductivity is also, for the first time, presented in detail for filtrate sheet assemblies' of stacked GO/rGO sheets.

4.
Nat Nanotechnol ; 5(8): 584-8, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20676090

RESUMEN

Nanostructured biological materials inspire the creation of materials with tunable mechanical properties. Strong cellulose nanofibrils derived from bacteria or wood can form ductile or tough networks that are suitable as functional materials. Here, we show that freeze-dried bacterial cellulose nanofibril aerogels can be used as templates for making lightweight porous magnetic aerogels, which can be compacted into a stiff magnetic nanopaper. The 20-70-nm-thick cellulose nanofibrils act as templates for the non-agglomerated growth of ferromagnetic cobalt ferrite nanoparticles (diameter, 40-120 nm). Unlike solvent-swollen gels and ferrogels, our magnetic aerogel is dry, lightweight, porous (98%), flexible, and can be actuated by a small household magnet. Moreover, it can absorb water and release it upon compression. Owing to their flexibility, high porosity and surface area, these aerogels are expected to be useful in microfluidics devices and as electronic actuators.


Asunto(s)
Celulosa/química , Cristalización/métodos , Magnetismo/instrumentación , Nanoestructuras/química , Nanoestructuras/ultraestructura , Nanotecnología/métodos , Papel , Módulo de Elasticidad , Diseño de Equipo , Análisis de Falla de Equipo , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Porosidad , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda