Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Bioorg Chem ; 130: 106255, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36403336

RESUMEN

COVID-19 and associated substantial inflammations continue to threaten humankind triggering death worldwide. So, the development of new effective antiviral and anti-inflammatory medications is a major scientific goal. Pyranopyrazoles have occupied a crucial position in medicinal chemistry because of their biological importance. Here, we report the design and synthesis of a series of sixteen pyranopyrazole derivatives substituted with two aryl groups at N-1 and C-4. The designed compounds are suggested to show dual activity to combat the emerging Coronaviruses and associated substantial inflammations. All compounds were evaluated for their in vitro antiviral activity and cytotoxicity against SARS-CoV infected Vero cells. As well, the in vitro assay of all derivatives against the SARS-CoV Mpro target was performed. Results revealed the potential of three pyranopyrazoles (22, 27, and 31) to potently inhibit the viral main protease with IC50 values of 2.01, 1.83, and 4.60 µM respectively compared with 12.85 and 82.17 µM for GC-376 and lopinavir. Additionally, in vivo anti-inflammatory testing for the most active compound 27 proved its ability to reduce levels of two cytokines (TNF-α and IL-6). Molecular docking and dynamics simulation revealed consistent results with the in vitro enzymatic assay and indicated the stability of the putative complex of 27 with SARS-CoV-2 Mpro. The assessment of metabolic stability and physicochemical properties of 27 have also been conducted. This investigation identified a set of metabolically stable pyranopyrazoles as effective anti-SARS-CoV-2 Mpro and suppressors of host cell cytokine release. We believe that the new compounds deserve further chemical optimization and evaluation for COVID-19 treatment.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Chlorocebus aethiops , Animales , Humanos , Antivirales/farmacología , Antivirales/química , SARS-CoV-2 , Células Vero , Simulación del Acoplamiento Molecular , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Inflamación
2.
Int J Mol Sci ; 24(12)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37373340

RESUMEN

Diabetes is a chronic fast-growing metabolic disorder that is characterized by high blood glucose levels. Tagetes minuta L. has been used as a traditional remedy for various illnesses for many years, and, furthermore, its oil is used in the perfume and flavor industries. T. minuta contains various metabolites, such as flavonoids, thiophenes, terpenes, sterols, and phenolics, with varied bioactivities. Flavonoids can inhibit carbohydrate-digesting enzymes, such as alpha-amylase, which is a convenient dietary strategy for controlling hyperglycemia. In the current investigation, the isolated flavonoids quercetagetin-6-O-(6-O-caffeoyl-ß-D-glucopyranoside), quercetagetin-7-O-ß-D-glucopyranoside, quercetagetin-6-O-ß-D-glucopyranoside, minutaside A, patuletin-7-O-ß-D-glucopyranoside, quercetagetin-7-methoxy-6-O-ß-D-glucopyranoside, tagenols A and B, quercetagetin-3,7-dimethoxy-6-O-ß-D-glucopyranoside, patuletin, quercetin-3,6-dimethyl ether, and quercetin-3-methyl ether from T. minuta were assessed for their alpha-amylase inhibition (AAI) efficacy using an in vitro assay, as well as molecular docking, dynamics simulation, and ADMET analyses. Our findings show that quercetagetin-6-O-(6-O-caffeoyl-ß-D-glucopyranoside) (1), quercetagetin-7-O-ß-D-glucopyranoside (2), quercetagetin-6-O-ß-D-glucopyranoside (3), minutaside A (4), patuletin-7-O-ß-D-glucopyranoside (5), and quercetagetin-7-methoxy-6-O-ß-D-glucopyranoside (6) had a notable AAI capacity (IC50s ranged from 7.8 to 10.1 µM) compared to acarbose (IC50 7.1 µM). Furthermore, these compounds with the highest binding affinity among the tested flavonoids revealed high docking scores for AA (ranging from -12.171 to 13.882 kcal/mol) compared to that of acarbose (-14.668 kcal/mol). In MDS, these compounds were observed to show maximum stability and the greatest binding free energy, suggesting that they may contend with native ligands. In addition, the ADMET analysis showed that these active compounds had a broad span of drug-like, pharmacokinetic, and physicochemical features and did not possess any considerable undesired effects. The current results suggest the potential of these metabolites as AAI candidates. However, further in vivo and mechanistic studies are warranted to specify the efficacy of these metabolites.


Asunto(s)
Flavonoides , Tagetes , Flavonoides/química , Tagetes/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , alfa-Amilasas , Acarbosa , Extractos Vegetales/farmacología , Extractos Vegetales/química
3.
Molecules ; 28(3)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36770958

RESUMEN

Dihydrofolate reductase (DHFR) is a crucial enzyme that maintains the levels of 5,6,7,8-tetrahydrofolate (THF) required for the biological synthesis of the building blocks of DNA, RNA, and proteins. Over-activation of DHFR results in the progression of multiple pathological conditions such as cancer, bacterial infection, and inflammation. Therefore, DHFR inhibition plays a major role in treating these illnesses. Sesquiterpenes of various types are prime metabolites derived from the marine sponge Dactylospongia elegans and have demonstrated antitumor, anti-inflammation, and antibacterial capacities. Here, we investigated the in silico potential inhibitory effects of 87 D. elegans metabolites on DHFR and predicted their ADMET properties. Compounds were prepared computationally for molecular docking into the selected crystal structure of DHFR (PDB: 1KMV). The docking scores of metabolites 34, 28, and 44 were the highest among this series (gscore values of -12.431, -11.502, and -10.62 kcal/mol, respectively), even above the co-crystallized inhibitor SRI-9662 score (-10.432 kcal/mol). The binding affinity and protein stability of these top three scored compounds were further estimated using molecular dynamic simulation. Compounds 34, 28, and 44 revealed high binding affinity to the enzyme and could be possible leads for DHFR inhibitors; however, further in vitro and in vivo investigations are required to validate their potential.


Asunto(s)
Antagonistas del Ácido Fólico , Poríferos , Sesquiterpenos , Animales , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular , Tetrahidrofolato Deshidrogenasa/química , Antagonistas del Ácido Fólico/química , Poríferos/metabolismo , Sesquiterpenos/farmacología
4.
Molecules ; 28(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36838749

RESUMEN

The discovery of natural drug metabolites is a leading contributor to fulfilling the sustainable development goal of finding solutions to global health challenges. Depsidones are a class of polyketides that have been separated from lichens, fungi, sponges, and plants and possess various bioactivities, including cytotoxic, antimicrobial, antimalarial, antituberculosis, acetylcholinesterase and α-glucosidase inhibition, and anti-inflammatory effects. Endocannabinoid receptors (CB1 and CB2) are G-protein-coupled receptors (GPCRs), and their activation mediates many physiological processes. CB1 is the dominant subtype in the central nervous system, while CB2 is mainly expressed in the immune system. The two receptors exhibit high heterogeneity, making developing selective ligands a great challenge. Attempts to develop CB2 selective agonists for treating inflammatory diseases and neuropathic pain have not been successful due to the high homology of the binding sites of the CB receptors. In this work, 235 depsidones from various sources were investigated for the possibility of identifying CB2-selective agonists by performing multiple docking studies, including induced fit docking and Prime/molecular mechanics-generalized Born surface area (MM-GBSA) calculations to predict the binding mode and free energy. Simplicildone J (10), lobaric acid (110), mollicellin Q (101), garcinisidone E (215), mollicellin P (100), paucinervin Q (149), and boremexin C (161) had the highest binding scores (-12.134 kcal/mol, -11.944 kcal/mol, -11.479 kcal/mol, -11.394 kcal/mol, -11.322 kcal/mol, -11.305 kcal/mol, and -11.254 kcal/mol, respectively) when screened against the CB2 receptor (PDB ID: 6KPF). The molecular dynamic simulation was performed on the compounds with the highest binding scores. The computational outcomes show that garcinisidone E (215) and paucinervin Q (149) could be substantial candidates for CB2 receptor activation and warrant further in vivo and in vitro investigations.


Asunto(s)
Agonistas de Receptores de Cannabinoides , Simulación de Dinámica Molecular , Agonistas de Receptores de Cannabinoides/química , Receptor Cannabinoide CB2 , Acetilcolinesterasa , Ligandos , Receptor Cannabinoide CB1 , Simulación del Acoplamiento Molecular
5.
Mar Drugs ; 20(12)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36547918

RESUMEN

The marine environment represents the largest ecosystem on the Earth's surface. Marine-derived fungi are of remarkable importance as they are a promising pool of diverse classes of bioactive metabolites. Bergamotane sesquiterpenoids are an uncommon class of terpenoids. They possess diverse biological properties, such as plant growth regulation, phototoxic, antimicrobial, anti-HIV, cytotoxic, pancreatic lipase inhibition, antidiabetic, anti-inflammatory, and immunosuppressive traits. The current work compiles the reported bergamotane sesquiterpenoids from fungal sources in the period ranging from 1958 to June 2022. A total of 97 compounds from various fungal species were included. Among these metabolites, 38 compounds were derived from fungi isolated from different marine sources. Furthermore, the biological activities, structural characterization, and biosynthesis of the compounds are also discussed. The summary in this work provides a detailed overview of the reported knowledge of fungal bergamotane sesquiterpenoids. Moreover, this in-depth and complete review could provide new insights for developing and discovering new valuable pharmaceutical agents from these natural metabolites.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Sesquiterpenos , Ecosistema , Antiinfecciosos/farmacología , Sesquiterpenos/farmacología , Antineoplásicos/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/química , Hongos/química
6.
Molecules ; 28(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36615238

RESUMEN

Cannabinoid receptor ligands are renowned as being therapeutically crucial for treating diverse health disorders. Phenylspirodrimanes are meroterpenoids with unique and varied structural scaffolds, which are mainly reported from the Stachybotrys genus and display an array of bioactivities. In this work, 114 phenylspirodrimanes reported from Stachybotrys chartarum were screened for their CB2 agonistic potential using docking and molecular dynamic simulation studies. Compound 56 revealed the highest docking score (-11.222 kcal/mol) compared to E3R_6KPF (native agonist, gscore value -12.12 kcal/mol). The molecular docking and molecular simulation results suggest that compound 56 binds to the putative binding site in the CB2 receptor with good affinity involving key interacting amino acid residues similar to that of the native ligands, E3R. The molecular interactions displayed π-π stacking with Phe183 and hydrogen bond interactions with Thr114, Leu182, and Ser285. These findings identified the structural features of these metabolites that might lead to the design of selective novel ligands for CB2 receptors. Additionally, phenylspirodrimanes should be further investigated for their potential as a CB2 ligand.


Asunto(s)
Agonistas de Receptores de Cannabinoides , Simulación de Dinámica Molecular , Receptor Cannabinoide CB2 , Terpenos , Sitios de Unión , Agonistas de Receptores de Cannabinoides/farmacología , Agonistas de Receptores de Cannabinoides/química , Ligandos , Simulación del Acoplamiento Molecular , Receptor Cannabinoide CB2/metabolismo , Terpenos/química , Terpenos/farmacología
7.
Molecules ; 27(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36296388

RESUMEN

Phenaloenones are structurally unique aromatic polyketides that have been reported in both microbial and plant sources. They possess a hydroxy perinaphthenone three-fused-ring system and exhibit diverse bioactivities, such as cytotoxic, antimicrobial, antioxidant, and anti-HIV properties, and tyrosinase, α-glucosidase, lipase, AchE (acetylcholinesterase), indoleamine 2,3-dioxygenase 1, angiotensin-I-converting enzyme, and tyrosine phosphatase inhibition. Moreover, they have a rich nucleophilic nucleus that has inspired many chemists and biologists to synthesize more of these related derivatives. The current review provides an overview of the reported phenalenones with a fungal origin, including their structures, sources, biosynthesis, and bioactivities. Moreover, more than 135 metabolites have been listed, and 71 references have been cited. SuperPred, an artificial intelligence (AI) webserver, was used to predict the potential targets for selected phenalenones. Among these targets, we chose human glucose transporter 1 (hGLUT1) for an extensive in silico study, as it shows high probability and model accuracy. Among them, aspergillussanones C (60) and G (60) possessed the highest negative docking scores of -15.082 and -14.829 kcal/mol, respectively, compared to the native inhibitor of 5RE (score: -11.206 kcal/mol). The MD (molecular dynamics) simulation revealed their stability in complexes with GLUT1 at 100 ns. The virtual screening study results open up a new therapeutic approach by using some phenalenones as hGLUT1 inhibitors, which might be a potential target for cancer therapy.


Asunto(s)
Acetilcolinesterasa , Policétidos , Humanos , alfa-Glucosidasas , Transportador de Glucosa de Tipo 1 , Monofenol Monooxigenasa , Antioxidantes , Inteligencia Artificial , Indolamina-Pirrol 2,3,-Dioxigenasa , Simulación de Dinámica Molecular , Policétidos/química , Lipasa , Angiotensinas , Monoéster Fosfórico Hidrolasas , Tirosina , Simulación del Acoplamiento Molecular
8.
Molecules ; 27(20)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36296435

RESUMEN

Sickle cell disease (SCD) is caused by a single-point mutation, and the ensuing deoxygenation-induced polymerization of sickle hemoglobin (HbS), and reduction in bioavailability of vascular nitric oxide (NO), contribute to the pathogenesis of the disease. In a proof-of-concept study, we successfully incorporated nitrate ester groups onto two previously studied potent antisickling aromatic aldehydes, TD7 and VZHE039, to form TD7-NO and VZHE039-NO hybrids, respectively. These compounds are stable in buffer but demonstrated the expected release of NO in whole blood in vitro and in mice. The more promising VZHE039-NO retained the functional and antisickling activities of the parent VZHE039 molecule. Moreover, VZHE039-NO, unlike VZHE039, significantly attenuated RBC adhesion to laminin, suggesting this compound has potential in vivo RBC anti-adhesion properties relevant to vaso-occlusive events. Crystallographic studies show that, as with VZHE039, VZHE039-NO also binds to liganded Hb to make similar protein interactions. The knowledge gained during these investigations provides a unique opportunity to generate a superior candidate drug in SCD with enhanced benefits.


Asunto(s)
Anemia de Células Falciformes , Hemoglobina Falciforme , Ratones , Animales , Hemoglobina Falciforme/metabolismo , Antidrepanocíticos/farmacología , Antidrepanocíticos/uso terapéutico , Óxido Nítrico , Aldehídos/farmacología , Nitratos , Laminina , Anemia de Células Falciformes/tratamiento farmacológico , Anemia de Células Falciformes/metabolismo , Ésteres
9.
J Enzyme Inhib Med Chem ; 36(1): 802-818, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33730937

RESUMEN

A new series of quinoline derivatives of combretastatin A-4 have been designed, synthesised and demonstrated as tubulin polymerisation inhibitors. These novel compounds showed significant antiproliferative activities, among them, 12c exhibited the most potent inhibitory activity against different cancer cell lines (MCF-7, HL-60, HCT-116 and HeLa) with IC50 ranging from 0.010 to 0.042 µM, and with selectivity profile against MCF-10A non-cancer cells. Further mechanistic studies suggest that 12c can inhibit tubulin polymerisation and cell migration, leading to G2/M phase arrest. Besides, 12c induces apoptosis via a mitochondrial-dependant apoptosis pathway and caused reactive oxygen stress generation in MCF-7 cells. These results provide guidance for further rational development of potent tubulin polymerisation inhibitors for the treatment of cancer.HighlightsA novel series of quinoline derivatives of combretastatin A-4 have been designed and synthesised.Compound 12c showed significant antiproliferative activities against different cancer cell lines.Compound 12c effectively inhibited tubulin polymerisation and competed with [3H] colchicine in binding to tubulin.Compound 12c arrested the cell cycle at G2/M phase, effectively inducing apoptosis and inhibition of cell migration.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Descubrimiento de Drogas , Quinolinas/farmacología , Estilbenos/farmacología , Moduladores de Tubulina/farmacología , Tubulina (Proteína)/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Polimerizacion/efectos de los fármacos , Quinolinas/síntesis química , Quinolinas/química , Especies Reactivas de Oxígeno/metabolismo , Estilbenos/síntesis química , Estilbenos/química , Relación Estructura-Actividad , Moduladores de Tubulina/síntesis química , Moduladores de Tubulina/química
10.
Bioorg Chem ; 103: 104133, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32745759

RESUMEN

A series of benzothiazole/isatin linked to 1,2,3-triazole moiety and terminal sulpha drugs 5a-e and 6a-e were synthesized and evaluated for cytotoxic activity against a panel of cancer cell lines. The novel compounds showed variable IC50 range of activity and some of them were potent compared to reference drug. The promising compounds were subjected as postulated the mimicry proposal for quinazoline-based EGFR inhibitors for their inhibitory profile against EGFR TK enzyme. That data obtained revealed that most of these compounds were potent EGFR TK inhibitors at nanomolar concentrations. Among these, compounds 5a and 5b showed more potent activity on EGFR compared to erlotinib (IC50 103 and 104 versus 67.6 nM). Based upon the results, molecular docking analysis was performed on EGFR receptor and proved the strong contribution of fragments; benzothiazole, isatin, and triazole to the binding ATP pocket. When these selected compounds 5a and 5b were tested in an HepG2 model, they could effectively inhibited tumor growth, strongly induced cancer cell apoptosis, and suppressed cell cycle progression leading to DNA fragmentation. Well-DMET profile of the most active derivatives was presented and compared to the reference drugs. Taken together, we introduced novel triazole-sulpha drug hybrid for the first time as EGFR inhibitors and the results of our studies indicate that the newly discovered inhibitors have significant potential for anticancer treatment.


Asunto(s)
Antineoplásicos/farmacología , Benzotiazoles/farmacología , Isatina/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinas/farmacología , Triazoles/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Benzotiazoles/síntesis química , Benzotiazoles/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Humanos , Isatina/síntesis química , Isatina/química , Modelos Moleculares , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Quinazolinas/química , Relación Estructura-Actividad , Triazoles/química
11.
Bioorg Chem ; 99: 103781, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32222620

RESUMEN

A series of novel 2-Amino-4-Methylthiazole analogs were developed via three-step reaction encompassing hydrazine-1-carboximidamide motif to combat Gram-positive and Gram-negative bacterial and fungal infections. Noticeably, the thiazole-carboximidamide derivatives 4a-d displayed excellent antimicrobial activity and the most efficacious analogue 4d with MIC/MBC values of 0.5 and 4 µg/mL, compared to reference drugs with very low toxicity to mammalian cells, resulting in a prominent selectivity more than 100 folds. Microscopic investigation of 4d biphenyl analogue showed cell wall lysis and promote rapid bactericidal activity though disrupting the bacterial membrane. In addition, an interesting in vitro investigation against GlcN-6-P Synthase Inhibition was done which showed potency in the nanomolar range. Meanwhile, this is the first study deploying a biomimicking strategy to design potent thiazole-carboximidamides that targeting GlcN-6-P Synthase as antimicrobial agents. Importantly, Molecular modeling simulation was done for the most active 4d analogue to study the interaction of this analogue which showed good binding propensity to glucosamine binding site which support the in vitro data.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/antagonistas & inhibidores , Tiazoles/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antifúngicos/síntesis química , Antifúngicos/química , Aspergillus niger/efectos de los fármacos , Aspergillus oryzae/efectos de los fármacos , Bacillus subtilis/efectos de los fármacos , Candida albicans/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Escherichia coli/efectos de los fármacos , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/metabolismo , Pruebas de Sensibilidad Microbiana , Micrococcus luteus/efectos de los fármacos , Estructura Molecular , Pseudomonas/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-Actividad , Tiazoles/síntesis química , Tiazoles/química
12.
Bioorg Chem ; 101: 103992, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32554279

RESUMEN

Thiazole derivatives are known to possess various biological activities such as antiparasitic, antifungal, antimicrobial and antiproliferative activities. Matrix metalloproteinases (MMPs) are important protease target involved in tumor progression including angiogenesis, tissue invasion, and migration. Therefore, MMPs have also been reported as potential diagnostic and prognostic biomarkers in many types of cancer. Herein, new aryl thiazoles were synthesized and evaluated for their anticancer effects on a panel of cancer cell lines including the invasive MDA-MB-231 line. Some of these compounds showed IC50 values in the submicromolar range in anti-proliferative assays. In order to examine the relationship between their anticancer activity and MMPs targets, the compounds were evaluated for their inhibitory effects on MMP-2 and 9. That data obtained revealed that most of these compounds were potent dual MMP-2/9 inhibitors at nanomolar concentrations. Among these, 2-(1-(2-(2-((E)-4-iodobenzylidene)hydrazineyl)-4-methylthiazol-5-yl)ethylidene)hydrazine-1-carboximidamide (4a) was the most potent non-selective dual MMP-2/9 inhibitor with inhibitory concentrations of 56 and 38 nM respectively. When compound 4a was tested in an MDA-MB-231, HCT-116, MCF-7 model, it effectively inhibited tumor growth, strongly induced cancer cell apoptosis, inhibit cell migration, and suppressed cell cycle progression leading to DNA fragmentation. Taken together, the results of our studies indicate that the newly discovered thiazole-based MMP-2/9 inhibitors have significant potential for anticancer treatment.


Asunto(s)
Puntos de Control del Ciclo Celular/efectos de los fármacos , Fragmentación del ADN/efectos de los fármacos , Descubrimiento de Drogas , Metaloproteinasa 2 de la Matriz/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/efectos de los fármacos , Inhibidores de Proteasas/farmacología , Triazoles/farmacología , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Cristalografía por Rayos X , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacocinética , Relación Estructura-Actividad , Cicatrización de Heridas/efectos de los fármacos
13.
Bioorg Chem ; 105: 104387, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33130344

RESUMEN

7H-Benzo[7,8]chromeno[2,3-d]pyrimidin-9(8H)-amine (6a,b) have been synthesized via hydrazinolysis of the imidates (5a,b). Polysubstituted chromenotriazolopyrimidine (7a-j), (12a,b) and Schiff base (8a,b) derivatives have also been prepared. The new heterocyclic derivatives were affirmed by spectral data. The target compounds have been screened for antibacterial and antifungal activity. Compounds 6a,b and 7a-c, g,h displayed the most favorable antimicrobial activities in resemblance to the reference antimicrobial agents by IZ range over 24 mm. In addition, MIC, MBC and MFC were also tested and screen for most active compound 6a by 6.25 µg/mL showing bactericidal effect. SAR study revealed that the antimicrobial vitality of the target compounds was safely influenced by the lipophilicity substituents and the calculated log P value. The potent compounds were subjected into in vitro enzyme screening (14α-Demethylase and DNA Gyrase) against both interesting targets and showed good inhibitory profile. Molecular modeling analyses were introduced and discussed focusing on the docking of active compounds into two essential targets, and their ADMET properties were studied.


Asunto(s)
Inhibidores de 14 alfa Desmetilasa/farmacología , Antibacterianos/farmacología , Antifúngicos/farmacología , Benzopiranos/farmacología , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de 14 alfa Desmetilasa/síntesis química , Inhibidores de 14 alfa Desmetilasa/química , Antibacterianos/síntesis química , Antibacterianos/química , Antifúngicos/síntesis química , Antifúngicos/química , Aspergillus/efectos de los fármacos , Benzopiranos/síntesis química , Benzopiranos/química , Candida albicans/efectos de los fármacos , Girasa de ADN/metabolismo , Relación Dosis-Respuesta a Droga , Bacterias Grampositivas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Molecular , Esterol 14-Desmetilasa/metabolismo , Relación Estructura-Actividad , Inhibidores de Topoisomerasa II/síntesis química , Inhibidores de Topoisomerasa II/química
14.
Bioorg Chem ; 101: 103953, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32474179

RESUMEN

Curcumin and trans-cinnamaldehyde are acrolein-based Michael acceptor compounds that are commonly found in domestic condiments, and known to cause cancer cell death via redox mechanisms. Based on the structural features of these compounds we designed and synthesized several 2-cinnamamido-N-substituted-cinnamamide (bis-cinnamamide) compounds. One of the derivatives, (Z)-2-[(E)-cinnamamido]-3-phenyl-N-propylacrylamide 8 showed a moderate antiproliferative potency (HCT-116 cell line inhibition of 32.0 µM), no inhibition of normal cell lines C-166, and proven cellular activities leading to apoptosis. SAR studies led to more than 10-fold increase in activity. Our most promising compound, [(Z)-3-(1H-indol-3-yl)-N-propyl-2-[(E)-3-(thien-2-yl)propenamido)propenamide] 45 killed colon cancer cells at IC50 = 0.89 µM (Caco-2), 2.85 µM (HCT-116) and 1.65 µM (HT-29), while exhibiting much weaker potency on C-166 and BHK normal cell lines (IC50 = 71 µM and 77.6 µM, respectively). Cellular studies towards identifying the compounds mechanism of cytotoxic activities revealed that apoptotic induction occurs in part as a result of oxidative stress. Importantly, the compounds showed inhibition of cancer stem cells that are critical for maintaining the potential for self-renewal and stemness. The results presented here show discovery of covalently acting Michael addition compounds that potently kill cancer cells by a defined mechanism, with prominent selectivity profile over non-cancerous cell lines.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Cinamatos/farmacología , Neoplasias del Colon/patología , Estrés Oxidativo/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células HCT116 , Humanos
15.
Bioorg Chem ; 96: 103656, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32062449

RESUMEN

A novel series of [1,2,4]triazolo[4,3-a]quinoxaline derivatives of different heteroaromatization members were synthesized. The newly synthesized molecules were explored for their potential antimicrobial activities against a panel of pathogenic organisms. Among these derivatives, the chalcone compound 6e with a methoxy substituent exhibited broad potent antimicrobial activity against most of the bacterial and fungal strains. Furthermore, the analysis of the SAR disclosed that the linker and terminal aromatic fragments perform critical roles in exerting antibacterial activity. The molecular docking calculations were executed on two of the most bacterial targets, ATP-binding sites of DNA gyrase B, and the folate-binding site of DHFR enzymes. The results presented good binding data to the pockets of both enzymes showing different linkers contributions through the hydrogen-bonding and aromatic stacking interactions that stabilize the compounds in their pockets taking 6e compound as representative of most active analogs. In addition, good pharmacokinetic profiling data for the 6e compound was obtained and compared to reference drugs. Accordingly, our findings suggest that [1,2,4]triazolo[4,3-a]quinoxaline scaffold is an interesting precursor for the design of potent antimicrobial agents with multitarget inhibition.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/enzimología , Antagonistas del Ácido Fólico/farmacología , Quinoxalinas/farmacología , Inhibidores de Topoisomerasa II/farmacología , Antibacterianos/química , Antibacterianos/farmacocinética , Girasa de ADN/metabolismo , Escherichia coli/efectos de los fármacos , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Antagonistas del Ácido Fólico/química , Antagonistas del Ácido Fólico/farmacocinética , Humanos , Modelos Moleculares , Quinoxalinas/química , Quinoxalinas/farmacocinética , Relación Estructura-Actividad , Tetrahidrofolato Deshidrogenasa/metabolismo , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/farmacocinética , Triazoles/química , Triazoles/farmacocinética , Triazoles/farmacología
16.
Bioorg Chem ; 76: 332-342, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29227917

RESUMEN

Fifteen new substituted N-2-(2-oxo-3-phenylquinoxalin-1(2H)-yl) acetamides 5a-f, 6a-f, and 8a-c were synthesized by reacting ethyl 2-(2-oxo-3-phenylquinoxalin-1(2H)-yl)acetate with various primary amines including benzylamines, sulfonamides, and amino acids. The in vitro antimicrobial screening of the target compounds was screened to assess their antibacterial and antifungal activity. As a result, seven compounds namely; 5a, 5c, 5d, 6a, 6c, 8b and 8c showed a promising broad spectrum antibacterial activity against both Gram-positive and Gram-negative strains. Among these, the analogs 5c and 6d were nearly as equiactive as ciprofloxacin drug. Meanwhile, four compounds namely; 5c, 6a, 6f and 8c exhibited appreciable antifungal activity with MIC values range 33-40 mg/mL comparable with clotrimazole (MIC 25 mg/mL). In addition, the anticancer effects of the synthesized compounds were evaluated against three cancer lines. The data obtained revealed the benzylamines and sulpha derivatives were the most active compounds especially 5f and 6f ones. Further EGFR enzymatic investigation was carried out for these most active compounds 5f and 6f resulting in inhibitory activity by 1.89 and 2.05 µM respectively. Docking simulation was performed as a trial to study the mechanisms and binding modes of these compounds toward the enzyme target, EGFR protein kinase enzyme. The results revealed good compounds placement in the active sites and stable interactions similar to the co-crystallized reference ligand. Collectively, the analogs 5f and 6f could be further utilized and optimized as good cytotoxic agents.


Asunto(s)
Acetamidas/farmacología , Antibacterianos/farmacología , Antifúngicos/farmacología , Antineoplásicos/farmacología , Diseño de Fármacos , Acetamidas/síntesis química , Acetamidas/química , Antibacterianos/síntesis química , Antibacterianos/química , Antifúngicos/síntesis química , Antifúngicos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Candida albicans/efectos de los fármacos , Línea Celular Tumoral , Ciprofloxacina/farmacología , Clotrimazol/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Pruebas de Enzimas , Escherichia coli/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Molecular , Pseudomonas aeruginosa/efectos de los fármacos , Receptor ErbB-2/antagonistas & inhibidores , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-Actividad
17.
Chem Pharm Bull (Tokyo) ; 66(10): 967-975, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30047515

RESUMEN

The 2-styryl-3,5-dihydro-4H-imidazol-4-one might be considered as a system with isosteric properties similar to trans-cinnamaldehyde (styrylaldehyde), a safe natural compound that exhibited interesting activities against various cancers. We synthesized a series of compounds that differ structurally in having different alkyl, aryl and heterocyclic substituents at the N3 position of the 2-styryl-4-imidaolone pharmacophore. The compounds were assayed for their cytotoxicity against both cancer and normal cell lines. In addition, their cellular mechanism of action as reactive oxygen species (ROS) inducers were investigated. Many of the synthesized compounds showed higher activities on colon, breast and hepatic cancer cell lines than the parent trans-cinnamaldehyde. Compounds 3a and 3e showed selective antiproliferative activity against cancer cell lines at low micromolar to sub-micromolar IC50 value. Compounds were extremely less toxic on normal cell lines baby hamster kidney fibroblasts (BHK) and human lung tissue fibroblast (WI-38). Similar to trans-cinnamaldehyde, the colon cancer cell cycle analysis indicated cell cycle changes consistent with increased oxidative stress leading to apoptosis. Compound 3e caused elevation of all cell oxidative indicators of ROS such as a decrease in reduced glutathione, increased malondialdehyde and suppression of catalase and superoxide dismutase activities. Dihydroethidium staining, nuclear fragmentation and increased caspase-3 further confirmed extensive apoptotic induction due to ROS accumulation upon treatment of human colon adenocarcinoma (HCT116) cells with compounds 3a and 3e. Changes in human breast adenocarcinoma (MCF7) cells were less revealing for ROS induction and increased oxidative stress. CONCLUSION: The compounds represent an example of efficient rescaffolding of a natural compound to a highly potent drug-like analogues.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Diseño de Fármacos , Imidazoles/síntesis química , Imidazoles/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Cricetinae , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Imidazoles/química , Estructura Molecular , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad
18.
Molecules ; 22(2)2017 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-28125041

RESUMEN

Some novel fluorinated quinazolines (5a-j) were designed and synthesized to be evaluated for their anticonvulsant activity and their neurotoxicity. Structures of all newly synthesized compounds were confirmed by their infrared (IR), mass spectrometry (MS) spectra, ¹H nuclear magnetic resonance (NMR), 13C-NMR, and elemental analysis (CHN). The anticonvulsant activity was evaluated by a subcutaneous pentylenetetrazole (scPTZ) test and maximal electroshock (MES)-induced seizure test, while neurotoxicity was evaluated by a rotorod test. The molecular docking was performed for all newly-synthesized compounds to assess their binding affinities to the GABA-A receptor in order to rationalize their anticonvulsant activities in a qualitative way. The data obtained from the molecular modeling was correlated with that obtained from the biological screening. These data showed considerable anticonvulsant activity for all newly-synthesized compounds. Compounds 5b, 5c, and 5d showed the highest binding affinities toward the GABA-A receptor, along with the highest anticonvulsant activities in experimental mice. These compounds also showed low neurotoxicity and low toxicity in the median lethal dose test compared to the reference drugs. A GABA enzymatic assay was performed for these highly active compounds to confirm the obtained results and explain the possible mechanism for anticonvulsant action. The most active compounds might be used as leads for future modification and optimization.


Asunto(s)
Anticonvulsivantes/química , Anticonvulsivantes/farmacología , Modelos Moleculares , Quinazolinas/química , Quinazolinas/farmacología , Receptores de GABA-A/química , Animales , Anticonvulsivantes/síntesis química , Diseño de Fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Quinazolinas/síntesis química , Receptores de GABA-A/metabolismo , Relación Estructura-Actividad
19.
Molecules ; 21(8)2016 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-27529207

RESUMEN

Hemoglobin (Hb) modifiers that stereospecifically inhibit sickle hemoglobin polymer formation and/or allosterically increase Hb affinity for oxygen have been shown to prevent the primary pathophysiology of sickle cell disease (SCD), specifically, Hb polymerization and red blood cell sickling. Several such compounds are currently being clinically studied for the treatment of SCD. Based on the previously reported non-covalent Hb binding characteristics of substituted aryloxyalkanoic acids that exhibited antisickling properties, we designed, synthesized and evaluated 18 new compounds (KAUS II series) for enhanced antisickling activities. Surprisingly, select test compounds showed no antisickling effects or promoted erythrocyte sickling. Additionally, the compounds showed no significant effect on Hb oxygen affinity (or in some cases, even decreased the affinity for oxygen). The X-ray structure of deoxygenated Hb in complex with a prototype compound, KAUS-23, revealed that the effector bound in the central water cavity of the protein, providing atomic level explanations for the observed functional and biological activities. Although the structural modification did not lead to the anticipated biological effects, the findings provide important direction for designing candidate antisickling agents, as well as a framework for novel Hb allosteric effectors that conversely, decrease the protein affinity for oxygen for potential therapeutic use for hypoxic- and/or ischemic-related diseases.


Asunto(s)
Antidrepanocíticos/química , Hemoglobinas/química , Regulación Alostérica/efectos de los fármacos , Antidrepanocíticos/síntesis química , Antidrepanocíticos/farmacología , Sitios de Unión , Ácido Clofíbrico/química , Ácido Clofíbrico/farmacología , Hemoglobinas/metabolismo , Modelos Moleculares , Conformación Molecular , Unión Proteica , Relación Estructura-Actividad
20.
Chem Biol Drug Des ; 103(1): e14371, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37798397

RESUMEN

Sickle cell disease (SCD) is the most common genetic disorder, affecting millions of people worldwide. Aromatic aldehydes, which increase the oxygen affinity of human hemoglobin to prevent polymerization of sickle hemoglobin and inhibit red blood cell (RBC) sickling, have been the subject of keen interest for the development of effective treatment against SCD. However, the aldehyde functional group metabolic instability has severly hampered their development, except for voxelotor, which was approved in 2019 for SCD treatment. To improve the metabolic stability of aromatic aldehydes, we designed and synthesized novel molecules by incorporating Michael acceptor reactive centers into the previously clinically studied aromatic aldehyde, 5-hydroxymethylfurfural (5-HMF). Eight such derivatives, referred to as MMA compounds were synthesized and studied for their functional and biological activities. Unlike 5-HMF, which forms Schiff-base interaction with αVal1 nitrogen of hemoglobin, the MMA compounds covalently interacted with ßCys93, as evidenced by reverse-phase HPLC and disulfide exchange reaction, explaining their RBC sickling inhibitory activities, which at 2 mM and 5 mM, range from 0% to 21% and 9% to 64%, respectively. Additionally, the MMA compounds showed a second mechanism of sickling inhibition (12%-41% and 13%-62% at 2 mM and 5 mM, respectively) by directly destabilizing the sickle hemoglobin polymer. In vitro studies demonstrated sustained pharmacologic activities of the compounds compared to 5-HMF. These findings hold promise for advancing SCD therapeutics.


Asunto(s)
Anemia de Células Falciformes , Antidrepanocíticos , Humanos , Antidrepanocíticos/farmacología , Antidrepanocíticos/uso terapéutico , Hemoglobinas/metabolismo , Hemoglobinas/uso terapéutico , Anemia de Células Falciformes/tratamiento farmacológico , Anemia de Células Falciformes/metabolismo , Hemoglobina Falciforme/metabolismo , Hemoglobina Falciforme/uso terapéutico , Furanos , Aldehídos/uso terapéutico , Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda