Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Environ Manage ; 311: 114806, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35240500

RESUMEN

Water pollution is one of the most critical issues worldwide and is a priority in all scientific agendas. Green nanotechnology presents a plethora of promising avenues for wastewater treatment. This review discusses the current trends in the valorization of zero-cost, biodegradable, and readily available agro-industrial biowaste to produce green bio-nanocatalysts and bio-nanosorbents for wastewater treatment. The promising roles of green bio-nanocatalysts and bio-nanosorbents in removing organic and inorganic water contaminants are discussed. The potent antimicrobial activity of bio-derived nanodisinfectants against water-borne pathogenic microbes is reviewed. The bioactive molecules involved in the chelation and tailoring of green synthesized nanomaterials are highlighted along with the mechanisms involved. Furthermore, this review emphasizes how the valorization of agro-industrial biowaste to green nanomaterials for wastewater treatment adheres to the fundamental principles of green chemistry, circular economy, nexus thinking, and zero-waste manufacturing. The potential economic, environmental, and health impacts of valorizing agro-industrial biowaste to green nanomaterials are highlighted. The challenges and future outlooks for the management of agro-industrial biowaste and safe application of green nanomaterials for wastewater treatment are summarized.

2.
Molecules ; 26(22)2021 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-34834124

RESUMEN

Free radicals are generated as byproducts of normal metabolic processes as well as due to exposure to several environmental pollutants. They are highly reactive species, causing cellular damage and are associated with a plethora of oxidative stress-related diseases and disorders. Antioxidants can control autoxidation by interfering with free radical propagation or inhibiting free radical formation, reducing oxidative stress, improving immune function, and increasing health longevity. Antioxidant functionalized metal nanoparticles, transition metal oxides, and nanocomposites have been identified as potent nanoantioxidants. They can be formulated in monometallic, bimetallic, and multi-metallic combinations via chemical and green synthesis techniques. The intrinsic antioxidant properties of nanomaterials are dependent on their tunable configuration, physico-chemical properties, crystallinity, surface charge, particle size, surface-to-volume ratio, and surface coating. Nanoantioxidants have several advantages over conventional antioxidants, involving increased bioavailability, controlled release, and targeted delivery to the site of action. This review emphasizes the most pioneering types of nanoantioxidants such as nanoceria, silica nanoparticles, polydopamine nanoparticles, and nanocomposite-, polysaccharide-, and protein-based nanoantioxidants. This review overviews the antioxidant potential of biologically synthesized nanomaterials, which have emerged as significant alternatives due to their biocompatibility and high stability. The promising nanoencapsulation nanosystems such as solid lipid nanoparticles, nanostructured lipid carriers, and liposome nanoparticles are highlighted. The advantages, limitations, and future insights of nanoantioxidant applications are discussed.


Asunto(s)
Nanopartículas del Metal/química , Nanoestructuras/química , Animales , Antioxidantes/química , Materiales Biocompatibles/química , Humanos , Estrés Oxidativo/efectos de los fármacos
3.
Molecules ; 25(19)2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33007905

RESUMEN

Quantum dots (QDs) are fluorescent nanocrystals with superb photo-physical properties. Applications of QDs have been exponentially increased during the past decade. They can be employed in several disciplines, including biological, optical, biomedical, engineering, and energy applications. This review highlights the structural composition and distinctive features of QDs, such as resistance to photo-bleaching, wide range of excitations, and size-dependent light emission features. Physical and chemical preparation of QDs have prominent downsides, including high costs, regeneration of hazardous byproducts, and use of external noxious chemicals for capping and stabilization purposes. To eliminate the demerits of these methods, an emphasis on the latest progress of microbial synthesis of QDs by bacteria, yeast, and fungi is introduced. Some of the biomedical applications of QDs are overviewed as well, such as tumor and microRNA detection, drug delivery, photodynamic therapy, and microbial labeling. Challenges facing the microbial fabrication of QDs are discussed with the future prospects to fully maximize the yield of QDs by elucidating the key enzymes intermediating the nucleation and growth of QDs. Exploration of the distribution and mode of action of QDs is required to promote their biomedical applications.


Asunto(s)
Tecnología Biomédica/métodos , Puntos Cuánticos/química , Animales , Bacterias/metabolismo , Fenómenos Químicos , Sistemas de Liberación de Medicamentos , Fluorescencia , Humanos
4.
J Biotechnol ; 392: 34-47, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38925504

RESUMEN

Clavibacter michiganensis subsp. michiganensis (Cmm) and C. michiganensis subsp. capsici (Cmc) are phytopathogenic bacteria that cause bacterial canker disease in tomatoes and peppers, respectively. Bacterial canker disease poses serious challenges to solanaceous crops, causing significant yield losses and economic costs. Effective management necessitates the development of sustainable control strategies employing nanobiotechnology. In this study, the antibacterial effects of four Aspergillus sojae-mediated nanoformulations, including cobalt oxide nanoparticles (Co3O4 NPs), zinc oxide nanoparticles (ZnO NPs), cobalt ferrite nanoparticles (CoFe2O4 NPs), and CoFe2O4/functionalized multi-walled carbon nanotube (fMWCNT) bionanocomposite, were evaluated against Cmm and Cmc. The diameters of the zone of inhibition of A. sojae-mediated Co3O4 NPs, ZnO NPs, CoFe2O4 NPs, and CoFe2O4/fMWCNT bionanocomposite against Cmm and Cmc were 23.60 mm, 22.09 mm, 27.65 mm, 22.51 mm, and 19.33 mm, 17.66 mm, 21.64 mm, 18.77 mm, respectively. The broth microdilution assay was conducted to determine the minimal inhibitory and bactericidal concentrations. The MICs of Co3O4 NPs, ZnO NPs, CoFe2O4 NPs, and CoFe2O4/fMWCNT bionanocomposite against Cmm were 2.50 mg/mL, 1.25 mg/mL, 2.50 mg/mL, and 2.50 mg/mL, respectively. While, their respective MBCs against Cmm were 5.00 mg/mL, 2.50 mg/mL, 5.00 mg/mL, and 5.00 mg/mL. The respective MICs of Co3O4 NPs, ZnO NPs, CoFe2O4 NPs, and CoFe2O4/fMWCNT bionanocomposite against Cmc were 2.50 mg/mL, 1.25 mg/mL, 5.00 mg/mL, and 5.00 mg/mL. While, their respective MBCs against Cmc were 5.00 mg/mL, 2.50 mg/mL, 10.00 mg/mL, and 10.00 mg/mL. The morphological and ultrastructural changes of Cmm and Cmc cells were observed using field-emission scanning and transmission electron microscopy before and after treatment with sub-minimal inhibitory concentrations of the nanoformulations. Nanoformulation-treated bacterial cells became deformed and disrupted, displaying pits, deep cavities, and groove-like structures. The cell membrane detached from the bacterial cell wall, electron-dense particles accumulated in the cytoplasm, cellular components disintegrated, and the cells were lysed. Direct physical interactions between the prepared nanoformulations with Cmm and Cmc cells might be the major mechanism for their antibacterial potency. Further research is required for the in vivo application of the mycosynthesized nanoformulations as countermeasures to combat bacterial phytopathogens.


Asunto(s)
Antibacterianos , Clavibacter , Cobalto , Enfermedades de las Plantas , Óxido de Zinc , Cobalto/farmacología , Cobalto/química , Óxido de Zinc/farmacología , Óxido de Zinc/química , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Antibacterianos/farmacología , Antibacterianos/química , Clavibacter/efectos de los fármacos , Compuestos Férricos/farmacología , Compuestos Férricos/química , Óxidos/farmacología , Óxidos/química , Nanopartículas/química , Solanum lycopersicum/microbiología , Nanotubos de Carbono/química , Pruebas de Sensibilidad Microbiana
5.
Microbiol Res ; 282: 127656, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38432017

RESUMEN

Pseudomonas aeruginosa is an opportunistic bacterial pathogen that causes life-threatening and persistent infections in immunocompromised patients. It is the culprit behind a variety of hospital-acquired infections owing to its multiple tolerance mechanisms against antibiotics and disinfectants. Biofilms are sessile microbial aggregates that are formed as a result of the cooperation and competition between microbial cells encased in a self-produced matrix comprised of extracellular polymeric constituents that trigger surface adhesion and microbial aggregation. Bacteria in biofilms exhibit unique features that are quite different from planktonic bacteria, such as high resistance to antibacterial agents and host immunity. Biofilms of P. aeruginosa are difficult to eradicate due to intrinsic, acquired, and adaptive resistance mechanisms. Consequently, innovative approaches to combat biofilms are the focus of the current research. Nanocomposites, composed of two or more different types of nanoparticles, have diverse therapeutic applications owing to their unique physicochemical properties. They are emerging multifunctional nanoformulations that combine the desired features of the different elements to obtain the highest functionality. This review assesses the recent advances of nanocomposites, including metal-, metal oxide-, polymer-, carbon-, hydrogel/cryogel-, and metal organic framework-based nanocomposites for the eradication of P. aeruginosa biofilms. The characteristics and virulence mechanisms of P. aeruginosa biofilms, as well as their devastating impact and economic burden are discussed. Future research addressing the potential use of nanocomposites as innovative anti-biofilm agents is emphasized. Utilization of nanocomposites safely and effectively should be further strengthened to confirm the safety aspects of their application.


Asunto(s)
Nanocompuestos , Infecciones por Pseudomonas , Humanos , Pseudomonas aeruginosa , Biopelículas , Antibacterianos/farmacología , Virulencia , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Nanocompuestos/química
6.
Environ Pollut ; 298: 118836, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35032599

RESUMEN

Antimicrobial nanomaterials provide numerous opportunities for the synthesis of next-generation sustainable water disinfectants. Using the keywords graphene and water disinfection and graphene antibacterial activity, a detailed search of the Scopus database yielded 198 and 1433 studies on using graphene for water disinfection applications and graphene antibacterial activity in the last ten years, respectively. Graphene family nanomaterials (GFNs) have emerged as effective antibacterial agents. The current innovations in graphene-, graphene oxide (GO)-, reduced graphene oxide (rGO)-, and graphene quantum dot (GQD)-based nanocomposites for water disinfection, including their functionalization with semiconductor photocatalysts and metal and metal oxide nanoparticles, have been thoroughly discussed in this review. Furthermore, their novel application in the fabrication of 3D porous hydrogels, thin films, and membranes has been emphasized. The physicochemical and structural properties affecting their antibacterial efficiency, such as sheet size, layer number, shape, edges, smoothness/roughness, arrangement mode, aggregation, dispersibility, and surface functionalization have been highlighted. The various mechanisms involved in GFN antibacterial action have been reviewed, including the mechanisms of membrane stress, ROS-dependent and -independent oxidative stress, cell wrapping/trapping, charge transfer, and interaction with cellular components. For safe applications, the potential biosafety and biocompatibility of GFNs in aquatic environments are emphasized. Finally, the current limitations and future perspectives are discussed. This review may provide ideas for developing efficient and practical solutions using graphene-, GO-, rGO-, and GQD-based nanocomposites in water disinfection by rationally employing their unique properties.


Asunto(s)
Grafito , Nanopartículas del Metal , Nanocompuestos , Antibacterianos/farmacología , Desinfección , Agua
7.
Colloids Surf B Biointerfaces ; 200: 111578, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33508659

RESUMEN

Quantum dots (QDs) are promising nanoscale materials with sizes ranging from 1 to 10 nm, and have exponentially triggered scientific interest worldwide during the past decade. They exhibit size-tunable optical features, zero-dimensional structures, and quantum confinement effects. Moreover, they can be tailored to suit various applications. Phyto-synthesis of fluorescent metal chalcogenide QDs and carbon dots (CDs) is a green, feasible, low-cost, and environmentally safe approach to overcome the limitations of chemical and physical synthesis techniques. Different plant extracts provide several phytochemical constituents with numerous functional moieties for natural capping and stabilization of the synthesized metal chalcogenide QDs and CDs. Therefore, the green synthesis of metal chalcogenide QDs and CDs, their optical and structural properties, and applications such as diagnostics, biosensing, heavy metal detection, and photocatalytic degradation are comprehensively summarized in this review. Furthermore, the biovalorization of agricultural wastes, such as fruit and vegetable peels, is addressed to produce high-value metal chalcogenide QDs and CDs. In addition, the toxicity issues associated with these particles are described for the safe usage of QDs. Challenges that restrict the widespread application of QD particles are discussed along with future perspectives for their commercial, safe, and upscale production.


Asunto(s)
Metales Pesados , Puntos Cuánticos , Carbono , Puntos Cuánticos/toxicidad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda