RESUMEN
Among fish parasitic nematodes Rhabdochona is one of the most speciose genera, with c. 100 species. Twelve congeneric species occur in Mexican freshwater fishes, in a region located between the Nearctic and Neotropical biogeographical regions. Host association and biogeographical history have determined the high species richness of Rhabdochona in Mexico. One of these species, Rhabdochona mexicana, is highly specific to the characid genus Astyanax. Characids are a group of freshwater fish with Neotropical affinity. In this paper, we explore the genetic diversity of R. mexicana through samples obtained from populations of Astyanax spp. across river basins of Mexico and Guatemala. Sequences of one mitochondrial and two ribosomal genes were obtained from 38 individuals and analysed using Maximum Likelihood and Bayesian Inference analysis. Phylogenetic analyses using cox1, and a concatenated alignment of 18S + 28S + cox1 recovered two genetic lineages. One of them corresponded with R. mexicana sensu stricto; this lineage included three reciprocally monophyletic subgroups; the other lineage was highly divergent and represented a putative candidate species. A detailed morphological study was conducted to corroborate the molecular findings. We describe a new species herein and discuss the implications of using molecular tools to increase our knowledge about the diversity of a speciose genus such as Rhabdochona.
Asunto(s)
Núcleo Celular/genética , Characidae/parasitología , Enfermedades de los Peces/parasitología , Mitocondrias/genética , Infecciones por Spirurida/veterinaria , Spiruroidea/aislamiento & purificación , Animales , Guatemala , Proteínas del Helminto/genética , México , Filogenia , Infecciones por Spirurida/parasitología , Spiruroidea/clasificación , Spiruroidea/genética , Spiruroidea/crecimiento & desarrolloRESUMEN
The endangered twoline skiffia Neotoca bilineata, a viviparous fish of the subfamily Goodeinae, endemic to central Mexico (inhabiting two basins, Cuitzeo and Lerma-Santiago) was evaluated using genetic and habitat information. The genetic variation of all remaining populations of the species was analysed using both mitochondrial and microsatellite markers and their habitat conditions were assessed using a water quality index (I(WQ)). An 80% local extinction was found across the distribution of N. bilineata. The species was found in three of the 16 historical localities plus one previously unreported site. Most areas inhabited by the remaining populations had I(WQ) scores unsuitable for the conservation of freshwater biodiversity. Populations showed low but significant genetic differentiation with both markers (mtDNA φ(ST) = 0.076, P < 0.001; microsatellite F(ST) = 0.314, P < 0.001). Borbollon, in the Cuitzeo Basin, showed the highest level of differentiation and was identified as a single genetic unit by Bayesian assignment methods. Rio Grande de Morelia and Salamanca populations showed the highest genetic diversity and also a high migration rate facilitated by an artificial channel that connected the two basins. Overall, high genetic diversity values were observed compared with other freshwater fishes (average N(a) = 16 alleles and loci and mean ±S.D. H(o) = 0.63 ± 0.10 and nucleotide diversity π = 0.006). This suggests that the observed genetic diversity has not diminished as rapidly as the species' habitat destruction. No evidence of correlation between habitat conditions and genetic diversity was found. The current pattern of genetic diversity may be the result of both historical factors and recent modifications of the hydrological system. The main threat to the species may be the rapid habitat deterioration and associated demographic stochasticity rather than genetic factors.