Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Cell ; 175(3): 809-821.e19, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30270044

RESUMEN

Approximately 10% of human protein kinases are believed to be inactive and named pseudokinases because they lack residues required for catalysis. Here, we show that the highly conserved pseudokinase selenoprotein-O (SelO) transfers AMP from ATP to Ser, Thr, and Tyr residues on protein substrates (AMPylation), uncovering a previously unrecognized activity for a member of the protein kinase superfamily. The crystal structure of a SelO homolog reveals a protein kinase-like fold with ATP flipped in the active site, thus providing a structural basis for catalysis. SelO pseudokinases localize to the mitochondria and AMPylate proteins involved in redox homeostasis. Consequently, SelO activity is necessary for the proper cellular response to oxidative stress. Our results suggest that AMPylation may be a more widespread post-translational modification than previously appreciated and that pseudokinases should be analyzed for alternative transferase activities.


Asunto(s)
Adenosina Monofosfato/metabolismo , Dominio Catalítico , Procesamiento Proteico-Postraduccional , Selenoproteínas/metabolismo , Secuencia Conservada , Humanos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Estrés Oxidativo , Selenoproteínas/química
2.
Proc Natl Acad Sci U S A ; 119(24): e2203176119, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35648808

RESUMEN

Bacterial signal transduction systems sense changes in the environment and transmit these signals to control cellular responses. The simplest one-component signal transduction systems include an input sensor domain and an output response domain encoded in a single protein chain. Alternatively, two-component signal transduction systems transmit signals by phosphorelay between input and output domains from separate proteins. The membrane-tethered periplasmic bile acid sensor that activates the Vibrio parahaemolyticus type III secretion system adopts an obligate heterodimer of two proteins encoded by partially overlapping VtrA and VtrC genes. This co-component signal transduction system binds bile acid using a lipocalin-like domain in VtrC and transmits the signal through the membrane to a cytoplasmic DNA-binding transcription factor in VtrA. Using the domain and operon organization of VtrA/VtrC, we identify a fast-evolving superfamily of co-component systems in enteric bacteria. Accurate machine learning­based fold predictions for the candidate co-components support their homology in the twilight zone of rapidly evolving sequences and provide mechanistic hypotheses about previously unrecognized lipid-sensing functions.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Islas Genómicas , Proteínas de la Membrana , Sistemas de Secreción Tipo III , Vibrio parahaemolyticus , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ácidos y Sales Biliares/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Multimerización de Proteína , Transducción de Señal , Factores de Transcripción/metabolismo , Sistemas de Secreción Tipo III/genética , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/patogenicidad , Virulencia/genética
3.
Proc Natl Acad Sci U S A ; 119(32): e2208317119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914137

RESUMEN

The proper balance of synthesis, folding, modification, and degradation of proteins, also known as protein homeostasis, is vital to cellular health and function. The unfolded protein response (UPR) is activated when the mechanisms maintaining protein homeostasis in the endoplasmic reticulum become overwhelmed. However, prolonged or strong UPR responses can result in elevated inflammation and cellular damage. Previously, we discovered that the enzyme filamentation induced by cyclic-AMP (Fic) can modulate the UPR response via posttranslational modification of binding immunoglobulin protein (BiP) by AMPylation during homeostasis and deAMPylation during stress. Loss of fic in Drosophila leads to vision defects and altered UPR activation in the fly eye. To investigate the importance of Fic-mediated AMPylation in a mammalian system, we generated a conditional null allele of Fic in mice and characterized the effect of Fic loss on the exocrine pancreas. Compared to controls, Fic-/- mice exhibit elevated serum markers for pancreatic dysfunction and display enhanced UPR signaling in the exocrine pancreas in response to physiological and pharmacological stress. In addition, both fic-/- flies and Fic-/- mice show reduced capacity to recover from damage by stress that triggers the UPR. These findings show that Fic-mediated AMPylation acts as a molecular rheostat that is required to temper the UPR response in the mammalian pancreas during physiological stress. Based on these findings, we propose that repeated physiological stress in differentiated tissues requires this rheostat for tissue resilience and continued function over the lifetime of an animal.


Asunto(s)
AMP Cíclico , Proteínas de Drosophila , Drosophila melanogaster , Estrés del Retículo Endoplásmico , Nucleotidiltransferasas , Estrés Fisiológico , Respuesta de Proteína Desplegada , Animales , Ratones , Alelos , AMP Cíclico/metabolismo , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Nucleotidiltransferasas/deficiencia , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Páncreas/efectos de los fármacos , Páncreas/enzimología , Páncreas/metabolismo , Páncreas/fisiopatología , Estrés Fisiológico/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos
4.
J Biol Chem ; 299(4): 104591, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36894018

RESUMEN

Bile acids are important for digestion of food and antimicrobial activity. Pathogenic Vibrio parahaemolyticus senses bile acids and induce pathogenesis. The bile acid taurodeoxycholate (TDC) was shown to activate the master regulator, VtrB, of this system, whereas other bile acids such as chenodeoxycholate (CDC) do not. Previously, VtrA-VtrC was discovered to be the co-component signal transduction system that binds bile acids and induces pathogenesis. TDC binds to the periplasmic domain of the VtrA-VtrC complex, activating a DNA-binding domain in VtrA that then activates VtrB. Here, we find that CDC and TDC compete for binding to the VtrA-VtrC periplasmic heterodimer. Our crystal structure of the VtrA-VtrC heterodimer bound to CDC revealed CDC binds in the same hydrophobic pocket as TDC but differently. Using isothermal titration calorimetry, we observed that most mutants in the binding pocket of VtrA-VtrC caused a decrease in bile acid binding affinity. Notably, two mutants in VtrC bound bile acids with a similar affinity as the WT protein but were attenuated for TDC-induced type III secretion system 2 activation. Collectively, these studies provide a molecular explanation for the selective pathogenic signaling by V. parahaemolyticus and reveal insight into a host's susceptibility to disease.


Asunto(s)
Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , Ácidos y Sales Biliares/metabolismo , Transducción de Señal , Ácido Quenodesoxicólico , Proteínas Bacterianas/metabolismo
5.
Chem Rev ; 118(3): 1199-1215, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28819965

RESUMEN

Posttranslational modifications are covalent changes made to proteins that typically alter the function or location of the protein. AMPylation is an emerging posttranslational modification that involves the addition of adenosine monophosphate (AMP) to a protein. Like other, more well-studied posttranslational modifications, AMPylation is predicted to regulate the activity of the modified target proteins. However, the scope of this modification both in bacteria and in eukaryotes remains to be fully determined. In this review, we provide an up to date overview of the known AMPylating enzymes, the regulation of these enzymes, and the effect of this modification on target proteins.


Asunto(s)
Adenosina Monofosfato/metabolismo , Nucleotidiltransferasas/metabolismo , Proteínas/metabolismo , Animales , Bacterias/metabolismo , Bacterias/patogenicidad , Dominio Catalítico , Nucleotidiltransferasas/química , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/metabolismo , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Procesamiento Proteico-Postraduccional
6.
J Biol Chem ; 293(27): 10435-10437, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29643182

RESUMEN

My winding path toward a career in science was awkward, like an adolescent finding an identity. It did not follow a classic course; it had many interruptions, complications, and challenges. It also involved a bit of luck and extremely supportive colleagues, mentors, and family, including my husband, children, and in-laws. I was inspired to tell my story here because I met a young woman interviewing in 2018 for graduate school who is growing up with the same complicated family expectations, social challenges, love for science, and desire to be a scientist as I had four decades ago. Her future is uncertain, because her chosen academic path is not encouraged by those around her. We, as a society, must find ways to encourage, promote, enable, and give strength to those who want to follow their dreams, despite facing many challenges in their lives. Here are some things I learned on my career path that I hope might be helpful for others.


Asunto(s)
Distinciones y Premios , Selección de Profesión , Familia , Satisfacción en el Trabajo , Microbiología , Ciencia , Historia del Siglo XXI , Humanos
7.
PLoS Pathog ; 13(6): e1006438, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28640881

RESUMEN

The production of antimicrobial reactive oxygen species by the nicotinamide dinucleotide phosphate (NADPH) oxidase complex is an important mechanism for control of invading pathogens. Herein, we show that the gastrointestinal pathogen Vibrio parahaemolyticus counteracts reactive oxygen species (ROS) production using the Type III Secretion System 2 (T3SS2) effector VopL. In the absence of VopL, intracellular V. parahaemolyticus undergoes ROS-dependent filamentation, with concurrent limited growth. During infection, VopL assembles actin into non-functional filaments resulting in a dysfunctional actin cytoskeleton that can no longer mediate the assembly of the NADPH oxidase at the cell membrane, thereby limiting ROS production. This is the first example of how a T3SS2 effector contributes to the intracellular survival of V. parahaemolyticus, supporting the establishment of a protective intracellular replicative niche.


Asunto(s)
Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno/fisiología , Sistemas de Secreción Tipo III/metabolismo , Vibriosis/metabolismo , Vibrio parahaemolyticus/metabolismo , Células CACO-2 , Humanos , Microscopía Confocal , Especies Reactivas de Oxígeno/metabolismo
8.
EMBO Rep ; 18(11): 1978-1990, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28912123

RESUMEN

Most type VI secretion systems (T6SSs) described to date are protein delivery apparatuses that mediate bactericidal activities. Several T6SSs were also reported to mediate virulence activities, although only few anti-eukaryotic effectors have been described. Here, we identify three T6SSs in the marine bacterium Vibrio proteolyticus and show that T6SS1 mediates bactericidal activities under warm marine-like conditions. Using comparative proteomics, we find nine potential T6SS1 effectors, five of which belong to the polymorphic MIX-effector class. Remarkably, in addition to six predicted bactericidal effectors, the T6SS1 secretome includes three putative anti-eukaryotic effectors. One of these is a MIX-effector containing a cytotoxic necrotizing factor 1 domain. We demonstrate that T6SS1 can use this MIX-effector to target phagocytic cells, resulting in morphological changes and actin cytoskeleton rearrangements. In conclusion, the V. proteolyticus T6SS1, a system homologous to one found in pathogenic vibrios, uses a suite of polymorphic effectors that target both bacteria and eukaryotic neighbors.


Asunto(s)
Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Cromosomas Bacterianos/química , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Sistemas de Secreción Tipo VI/genética , Vibrio/genética , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/ultraestructura , Animales , Antibacterianos/metabolismo , Antibacterianos/toxicidad , Organismos Acuáticos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/toxicidad , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidad , Mapeo Cromosómico , Técnicas de Cocultivo , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/toxicidad , Ratones , Fagocitos/citología , Fagocitos/efectos de los fármacos , Dominios Proteicos , Células RAW 264.7 , Sistemas de Secreción Tipo VI/química , Sistemas de Secreción Tipo VI/metabolismo , Vibrio/metabolismo , Vibrio/patogenicidad , Virulencia
9.
J Bacteriol ; 200(15)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29555695

RESUMEN

The Gram-negative bacterium Vibrio parahaemolyticus is an opportunistic human pathogen and the leading cause of seafood-borne acute gastroenteritis worldwide. Recently, this bacterium was implicated as the etiologic agent of a severe shrimp disease with consequent devastating outcomes to shrimp farming. In both cases, acquisition of genetic material via horizontal transfer provided V. parahaemolyticus with new virulence tools to cause disease. Dissecting the molecular mechanisms of V. parahaemolyticus pathogenesis often requires manipulating its genome. Classically, genetic deletions in V. parahaemolyticus are performed using a laborious, lengthy, multistep process. Here, we describe a fast and efficient method to edit this bacterium's genome based on V. parahaemolyticus natural competence. Although this method is similar to one previously described, V. parahaemolyticus requires counterselection for curing of acquired plasmids due to its recalcitrant nature of retaining extrachromosomal DNA. We believe this approach will be of use to the Vibrio community.IMPORTANCE Spreading of vibrios throughout the world correlates with increased global temperatures. As they spread, they find new niches in which to survive, proliferate, and invade. Therefore, genetic manipulation of vibrios is of the utmost importance for studying these species. Here, we have delineated and validated a rapid method to create genetic deletions in Vibrio parahaemolyticus This study provides insightful methodology for studies with other Vibrio species.


Asunto(s)
Proteínas Bacterianas/metabolismo , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica/fisiología , Vibrio parahaemolyticus/genética , Proteínas Bacterianas/genética , Plásmidos , Transformación Genética , Vibrio parahaemolyticus/fisiología
10.
J Biol Chem ; 292(51): 21193-21204, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29089387

RESUMEN

Protein chaperones play a critical role in proteostasis. The activity of the major endoplasmic reticulum chaperone BiP (GRP78) is regulated by Fic-mediated AMPylation during resting states. By contrast, during times of stress, BiP is deAMPylated. Here, we show that excessive AMPylation by a constitutively active FicE247G mutant is lethal in Drosophila This lethality is cell-autonomous, as directed expression of the mutant FicE247G to the fly eye does not kill the fly but rather results in a rough and reduced eye. Lethality and eye phenotypes are rescued by the deAMPylation activity of wild-type Fic. Consistent with Fic acting as a deAMPylation enzyme, its activity was both time- and concentration-dependent. Furthermore, Fic deAMPylation activity was sufficient to suppress the AMPylation activity mediated by the constitutively active FicE247G mutant in Drosophila S2 lysates. Further, we show that the dual enzymatic activity of Fic is, in part, regulated by Fic dimerization, as loss of this dimerization increases AMPylation and reduces deAMPylation of BiP.


Asunto(s)
Adenosina Monofosfato/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Choque Térmico/metabolismo , Nucleotidiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional , Sustitución de Aminoácidos , Animales , Animales Modificados Genéticamente , Sistemas CRISPR-Cas , Línea Celular , Dimerización , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Anomalías del Ojo/genética , Anomalías del Ojo/metabolismo , Anomalías del Ojo/patología , Anomalías del Ojo/veterinaria , Femenino , Homocigoto , Cinética , Masculino , Mutación , Nucleotidiltransferasas/química , Nucleotidiltransferasas/genética , Especificidad de Órganos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Análisis de Supervivencia , Mutaciones Letales Sintéticas
11.
Proc Natl Acad Sci U S A ; 112(1): 100-5, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25453092

RESUMEN

Vesicle fusion governs many important biological processes, and imbalances in the regulation of membrane fusion can lead to a variety of diseases such as diabetes and neurological disorders. Here we show that the Vibrio parahaemolyticus effector protein VopQ is a potent inhibitor of membrane fusion based on an in vitro yeast vacuole fusion model. Previously, we demonstrated that VopQ binds to the V(o) domain of the conserved V-type H(+)-ATPase (V-ATPase) found on acidic compartments such as the yeast vacuole. VopQ forms a nonspecific, voltage-gated membrane channel of 18 Å resulting in neutralization of these compartments. We now present data showing that VopQ inhibits yeast vacuole fusion. Furthermore, we identified a unique mutation in VopQ that delineates its two functions, deacidification and inhibition of membrane fusion. The use of VopQ as a membrane fusion inhibitor in this manner now provides convincing evidence that vacuole fusion occurs independently of luminal acidification in vitro.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fusión de Membrana , ATPasas de Translocación de Protón Vacuolares/metabolismo , Vibrio parahaemolyticus/metabolismo , Ácidos/metabolismo , Electroquímica , Concentración de Iones de Hidrógeno , Canales Iónicos/metabolismo , Lípidos/química , Proteínas Mutantes/metabolismo , Proteínas SNARE/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo
12.
PLoS Pathog ; 11(8): e1005128, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26305100

RESUMEN

The type VI secretion system (T6SS) is a widespread protein secretion apparatus used by Gram-negative bacteria to deliver toxic effector proteins into adjacent bacterial or host cells. Here, we uncovered a role in interbacterial competition for the two T6SSs encoded by the marine pathogen Vibrio alginolyticus. Using comparative proteomics and genetics, we identified their effector repertoires. In addition to the previously described effector V12G01_02265, we identified three new effectors secreted by T6SS1, indicating that the T6SS1 secretes at least four antibacterial effectors, of which three are members of the MIX-effector class. We also showed that the T6SS2 secretes at least three antibacterial effectors. Our findings revealed that many MIX-effectors belonging to clan V are "orphan" effectors that neighbor mobile elements and are shared between marine bacteria via horizontal gene transfer. We demonstrated that a MIX V-effector from V. alginolyticus is a functional T6SS effector when ectopically expressed in another Vibrio species. We propose that mobile MIX V-effectors serve as an environmental reservoir of T6SS effectors that are shared and used to diversify antibacterial toxin repertoires in marine bacteria, resulting in enhanced competitive fitness.


Asunto(s)
Toxinas Bacterianas/genética , Genes Bacterianos/genética , Sistemas de Secreción Tipo VI/genética , Vibrio alginolyticus/genética , Secuencia de Aminoácidos , Secuencia de Bases , Transferencia de Gen Horizontal , Aptitud Genética/genética , Espectrometría de Masas , Datos de Secuencia Molecular
13.
Appl Environ Microbiol ; 83(13)2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28432099

RESUMEN

Acute hepatopancreatic necrosis disease (AHPND) is a newly emerging shrimp disease that has severely damaged the global shrimp industry. AHPND is caused by toxic strains of Vibrio parahaemolyticus that have acquired a "selfish plasmid" encoding the deadly binary toxins PirAvp/PirBvp To better understand the repertoire of virulence factors in AHPND-causing V. parahaemolyticus, we conducted a comparative analysis using the genome sequences of the clinical strain RIMD2210633 and of environmental non-AHPND and toxic AHPND isolates of V. parahaemolyticus Interestingly, we found that all of the AHPND strains, but none of the non-AHPND strains, harbor the antibacterial type VI secretion system 1 (T6SS1), which we previously identified and characterized in the clinical isolate RIMD2210633. This finding suggests that the acquisition of this T6SS might confer to AHPND-causing V. parahaemolyticus a fitness advantage over competing bacteria and facilitate shrimp infection. Additionally, we found highly dynamic effector loci in the T6SS1 of AHPND-causing strains, leading to diverse effector repertoires. Our discovery provides novel insights into AHPND-causing pathogens and reveals a potential target for disease control.IMPORTANCE Acute hepatopancreatic necrosis disease (AHPND) is a serious disease that has caused severe damage and significant financial losses to the global shrimp industry. To better understand and prevent this shrimp disease, it is essential to thoroughly characterize its causative agent, Vibrio parahaemolyticus Although the plasmid-encoded binary toxins PirAvp/PirBvp have been shown to be the primary cause of AHPND, it remains unknown whether other virulent factors are commonly present in V. parahaemolyticus and might play important roles during shrimp infection. Here, we analyzed the genome sequences of clinical, non-AHPND, and AHPND strains to characterize their repertoires of key virulence determinants. Our studies reveal that an antibacterial type VI secretion system is associated with the AHPND strains and differentiates them from non-AHPND strains, similar to what was seen with the PirA/PirB toxins. We propose that T6SS1 provides a selective advantage during shrimp infections.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hepatopáncreas/microbiología , Penaeidae/microbiología , Sistemas de Secreción Tipo VI/metabolismo , Vibrio parahaemolyticus/aislamiento & purificación , Enfermedad Aguda , Animales , Proteínas Bacterianas/genética , Sistemas de Secreción Tipo VI/genética , Vibrio parahaemolyticus/efectos de los fármacos , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/fisiología
14.
Proc Natl Acad Sci U S A ; 111(25): 9271-6, 2014 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-24927539

RESUMEN

Bacteria use diverse mechanisms to kill, manipulate, and compete with other cells. The recently discovered type VI secretion system (T6SS) is widespread in bacterial pathogens and used to deliver virulence effector proteins into target cells. Using comparative proteomics, we identified two previously unidentified T6SS effectors that contained a conserved motif. Bioinformatic analyses revealed that this N-terminal motif, named MIX (marker for type six effectors), is found in numerous polymorphic bacterial proteins that are primarily located in the T6SS genome neighborhood. We demonstrate that several MIX-containing proteins are T6SS effectors and that they are not required for T6SS activity. Thus, we propose that MIX-containing proteins are T6SS effectors. Our findings allow for the identification of numerous uncharacterized T6SS effectors that will undoubtedly lead to the discovery of new biological mechanisms.


Asunto(s)
Bacterias/genética , Proteínas Bacterianas/genética , Sistemas de Secreción Bacterianos/genética , Genoma Bacteriano/fisiología , Secuencias de Aminoácidos , Bacterias/metabolismo , Bacterias/patogenicidad , Proteínas Bacterianas/metabolismo , Estudio de Asociación del Genoma Completo
15.
Cell Microbiol ; 17(2): 164-73, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25440316

RESUMEN

Entry into host cells and intracellular persistence by invasive bacteria are tightly coupled to the ability of the bacterium to disrupt the eukaryotic cytoskeletal machinery. Herein we review the main strategies used by three intracellular pathogens to harness key modulators of the cytoskeleton. Two of these bacteria, namely Listeria monocytogenes and Salmonella enterica serovar Typhimurium, exhibit quite distinct intracellular lifestyles and therefore provide a comprehensive panel for the understanding of the intricate bacteria-cytoskeleton interplay during infections. The emerging intracellular pathogen Vibrio parahaemolyticus is depicted as a developing model for the uncovering of novel mechanisms used to hijack the cytoskeleton.


Asunto(s)
Citoesqueleto/metabolismo , Interacciones Huésped-Patógeno , Listeria monocytogenes/fisiología , Salmonella typhimurium/fisiología , Vibrio parahaemolyticus/fisiología , Endocitosis , Listeria monocytogenes/crecimiento & desarrollo , Salmonella typhimurium/crecimiento & desarrollo , Vibrio parahaemolyticus/crecimiento & desarrollo
16.
Mol Cell Proteomics ; 13(11): 3164-76, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25073739

RESUMEN

AMPylation (adenylylation) is a recently discovered mechanism employed by infectious bacteria to regulate host cell signaling. However, despite significant effort, only a few host targets have been identified, limiting our understanding of how these pathogens exploit this mechanism to control host cells. Accordingly, we developed a novel nonradioactive AMPylation screening platform using high-density cell-free protein microarrays displaying human proteins produced by human translational machinery. We screened 10,000 unique human proteins with Vibrio parahaemolyticus VopS and Histophilus somni IbpAFic2, and identified many new AMPylation substrates. Two of these, Rac2, and Rac3, were confirmed in vivo as bona fide substrates during infection with Vibrio parahaemolyticus. We also mapped the site of AMPylation of a non-GTPase substrate, LyGDI, to threonine 51, in a region regulated by Src kinase, and demonstrated that AMPylation prevented its phosphorylation by Src. Our results greatly expanded the repertoire of potential host substrates for bacterial AMPylators, determined their recognition motif, and revealed the first pathogen-host interaction AMPylation network. This approach can be extended to identify novel substrates of AMPylators with different domains or in different species and readily adapted for other post-translational modifications.


Asunto(s)
Adenosina Monofosfato/química , Proteínas Bacterianas/metabolismo , Química Clic/métodos , Reacción de Cicloadición , Procesamiento Proteico-Postraduccional/fisiología , Secuencia de Bases , Cobre/química , Interacciones Huésped-Patógeno , Humanos , Pasteurellaceae/metabolismo , Análisis por Matrices de Proteínas , Estructura Terciaria de Proteína , Vibriosis/patología , Vibrio parahaemolyticus/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Inhibidor beta de Disociación del Nucleótido Guanina rho/metabolismo , Proteína RCA2 de Unión a GTP
17.
Proc Natl Acad Sci U S A ; 110(28): 11559-64, 2013 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-23798441

RESUMEN

Defects in normal autophagic pathways are implicated in numerous human diseases--such as neurodegenerative diseases, cancer, and cardiomyopathy--highlighting the importance of autophagy and its proper regulation. Herein we show that Vibrio parahaemolyticus uses the type III effector VopQ (Vibrio outer protein Q) to alter autophagic flux by manipulating the partitioning of small molecules and ions in the lysosome. This effector binds to the conserved Vo domain of the vacuolar-type H(+)-ATPase and causes deacidification of the lysosomes within minutes of entering the host cell. VopQ forms a gated channel ∼18 Šin diameter that facilitates outward flux of ions across lipid bilayers. The electrostatic interactions of this type 3 secretion system effector with target membranes dictate its preference for host vacuolar-type H(+)-ATPase-containing membranes, indicating that its pore-forming activity is specific and not promiscuous. As seen with other effectors, VopQ is exploiting a eukaryotic mechanism, in this case manipulating lysosomal homeostasis and autophagic flux through transmembrane permeation.


Asunto(s)
Autofagia , Proteínas Bacterianas/fisiología , Homeostasis/fisiología , Activación del Canal Iónico , Lisosomas/fisiología , Vibrio parahaemolyticus/fisiología , Iones
18.
J Biol Chem ; 289(47): 32977-88, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25301945

RESUMEN

Rho GTPases are frequent targets of virulence factors as they are keystone signaling molecules. Herein, we demonstrate that AMPylation of Rho GTPases by VopS is a multifaceted virulence mechanism that counters several host immunity strategies. Activation of NFκB, Erk, and JNK kinase signaling pathways were inhibited in a VopS-dependent manner during infection with Vibrio parahaemolyticus. Phosphorylation and degradation of IKBα were inhibited in the presence of VopS as was nuclear translocation of the NFκB subunit p65. AMPylation also prevented the generation of superoxide by the phagocytic NADPH oxidase complex, potentially by inhibiting the interaction of Rac and p67. Furthermore, the interaction of GTPases with the E3 ubiquitin ligases cIAP1 and XIAP was hindered, leading to decreased degradation of Rac and RhoA during infection. Finally, we screened for novel Rac1 interactions using a nucleic acid programmable protein array and discovered that Rac1 binds to the protein C1QA, a protein known to promote immune signaling in the cytosol. Interestingly, this interaction was disrupted by AMPylation. We conclude that AMPylation of Rho Family GTPases by VopS results in diverse inhibitory consequences during infection beyond the most obvious phenotype, the collapse of the actin cytoskeleton.


Asunto(s)
Proteínas Bacterianas/metabolismo , Transducción de Señal , Vibrio parahaemolyticus/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Transporte Activo de Núcleo Celular , Adenosina Monofosfato/metabolismo , Núcleo Celular/metabolismo , Complemento C1q/metabolismo , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Quinasa I-kappa B/metabolismo , Immunoblotting , Proteínas Inhibidoras de la Apoptosis/metabolismo , Microscopía Confocal , Modelos Biológicos , Fosforilación , Unión Proteica , Superóxidos/metabolismo , Factor de Transcripción ReIA/metabolismo , Vibrio parahaemolyticus/fisiología , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Proteína de Unión al GTP rac1/metabolismo
19.
J Biol Chem ; 289(52): 36059-69, 2014 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-25395623

RESUMEN

Drosophila Fic (dFic) mediates AMPylation, a covalent attachment of adenosine monophosphate (AMP) from ATP to hydroxyl side chains of protein substrates. Here, we identified the endoplasmic reticulum (ER) chaperone BiP as a substrate for dFic and mapped the modification site to Thr-366 within the ATPase domain. The level of AMPylated BiP in Drosophila S2 cells is high during homeostasis, whereas the level of AMPylated BiP decreases upon the accumulation of misfolded proteins in the ER. Both dFic and BiP are transcriptionally activated upon ER stress, supporting the role of dFic in the unfolded protein response pathway. The inactive conformation of BiP is the preferred substrate for dFic, thus endorsing a model whereby AMPylation regulates the function of BiP as a chaperone, allowing acute activation of BiP by deAMPylation during an ER stress response. These findings not only present the first substrate of eukaryotic AMPylator but also provide a target for regulating the unfolded protein response, an emerging avenue for cancer therapy.


Asunto(s)
Adenosina Monofosfato/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Retículo Endoplásmico/metabolismo , Proteínas del Choque Térmico HSC70/metabolismo , Nucleotidiltransferasas/fisiología , Respuesta de Proteína Desplegada , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Línea Celular , Proteínas de Drosophila/química , Drosophila melanogaster/enzimología , Estrés del Retículo Endoplásmico , Proteínas del Choque Térmico HSC70/química , Homeostasis , Datos de Secuencia Molecular , Nucleotidiltransferasas/química , Procesamiento Proteico-Postraduccional , Transcripción Genética , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda