Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(16): e2322924121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38607933

RESUMEN

Many Mendelian disorders, such as Huntington's disease (HD) and spinocerebellar ataxias, arise from expansions of CAG trinucleotide repeats. Despite the clear genetic causes, additional genetic factors may influence the rate of those monogenic disorders. Notably, genome-wide association studies discovered somewhat expected modifiers, particularly mismatch repair genes involved in the CAG repeat instability, impacting age at onset of HD. Strikingly, FAN1, previously unrelated to repeat instability, produced the strongest HD modification signals. Diverse FAN1 haplotypes independently modify HD, with rare genetic variants diminishing DNA binding or nuclease activity of the FAN1 protein, hastening HD onset. However, the mechanism behind the frequent and the most significant onset-delaying FAN1 haplotype lacking missense variations has remained elusive. Here, we illustrated that a microRNA acting on 3'-UTR (untranslated region) SNP rs3512, rather than transcriptional regulation, is responsible for the significant FAN1 expression quantitative trait loci signal and allelic imbalance in FAN1 messenger ribonucleic acid (mRNA), accounting for the most significant and frequent onset-delaying modifier haplotype in HD. Specifically, miR-124-3p selectively targets the reference allele at rs3512, diminishing the stability of FAN1 mRNA harboring that allele and consequently reducing its levels. Subsequent validation analyses, including the use of antagomir and 3'-UTR reporter vectors with swapped alleles, confirmed the specificity of miR-124-3p at rs3512. Together, these findings indicate that the alternative allele at rs3512 renders the FAN1 mRNA less susceptible to miR-124-3p-mediated posttranscriptional regulation, resulting in increased FAN1 levels and a subsequent delay in HD onset by mitigating CAG repeat instability.


Asunto(s)
Enfermedad de Huntington , MicroARNs , Humanos , Regiones no Traducidas 3'/genética , Endodesoxirribonucleasas , Exodesoxirribonucleasas/genética , Estudio de Asociación del Genoma Completo , Enfermedad de Huntington/genética , MicroARNs/genética , Enzimas Multifuncionales
2.
Am J Hum Genet ; 109(5): 885-899, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35325614

RESUMEN

Genome-wide association studies (GWASs) of Huntington disease (HD) have identified six DNA maintenance gene loci (among others) as modifiers and implicated a two step-mechanism of pathogenesis: somatic instability of the causative HTT CAG repeat with subsequent triggering of neuronal damage. The largest studies have been limited to HD individuals with a rater-estimated age at motor onset. To capitalize on the wealth of phenotypic data in several large HD natural history studies, we have performed algorithmic prediction by using common motor and cognitive measures to predict age at other disease landmarks as additional phenotypes for GWASs. Combined with imputation with the Trans-Omics for Precision Medicine reference panel, predictions using integrated measures provided objective landmark phenotypes with greater power to detect most modifier loci. Importantly, substantial differences in the relative modifier signal across loci, highlighted by comparing common modifiers at MSH3 and FAN1, revealed that individual modifier effects can act preferentially in the motor or cognitive domains. Individual components of the DNA maintenance modifier mechanisms may therefore act differentially on the neuronal circuits underlying the corresponding clinical measures. In addition, we identified additional modifier effects at the PMS1 and PMS2 loci and implicated a potential second locus on chromosome 7. These findings indicate that broadened discovery and characterization of HD genetic modifiers based on additional quantitative or qualitative phenotypes offers not only the promise of in-human validated therapeutic targets but also a route to dissecting the mechanisms and cell types involved in both the somatic instability and toxicity components of HD pathogenesis.


Asunto(s)
Enfermedad de Huntington , Cognición , ADN , Estudio de Asociación del Genoma Completo , Humanos , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Expansión de Repetición de Trinucleótido
3.
Brain ; 147(6): 2009-2022, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38195181

RESUMEN

Huntington's disease (HD) predominantly affects the brain, causing a mixed movement disorder, cognitive decline and behavioural abnormalities. It also causes a peripheral phenotype involving skeletal muscle. Mitochondrial dysfunction has been reported in tissues of HD models, including skeletal muscle, and lymphoblast and fibroblast cultures from patients with HD. Mutant huntingtin protein (mutHTT) expression can impair mitochondrial quality control and accelerate mitochondrial ageing. Here, we obtained fresh human skeletal muscle, a post-mitotic tissue expressing the mutated HTT allele at physiological levels since birth, and primary cell lines from HTT CAG repeat expansion mutation carriers and matched healthy volunteers to examine whether such a mitochondrial phenotype exists in human HD. Using ultra-deep mitochondrial DNA (mtDNA) sequencing, we showed an accumulation of mtDNA mutations affecting oxidative phosphorylation. Tissue proteomics indicated impairments in mtDNA maintenance with increased mitochondrial biogenesis of less efficient oxidative phosphorylation (lower complex I and IV activity). In full-length mutHTT expressing primary human cell lines, fission-inducing mitochondrial stress resulted in normal mitophagy. In contrast, expression of high levels of N-terminal mutHTT fragments promoted mitochondrial fission and resulted in slower, less dynamic mitophagy. Expression of high levels of mutHTT fragments due to somatic nuclear HTT CAG instability can thus affect mitochondrial network dynamics and mitophagy, leading to pathogenic mtDNA mutations. We show that life-long expression of mutant HTT causes a mitochondrial phenotype indicative of mtDNA instability in fresh post-mitotic human skeletal muscle. Thus, genomic instability may not be limited to nuclear DNA, where it results in somatic expansion of the HTT CAG repeat length in particularly vulnerable cells such as striatal neurons. In addition to efforts targeting the causative mutation, promoting mitochondrial health may be a complementary strategy in treating diseases with DNA instability such as HD.


Asunto(s)
ADN Mitocondrial , Proteína Huntingtina , Enfermedad de Huntington , Dinámicas Mitocondriales , Mutación , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , ADN Mitocondrial/genética , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Dinámicas Mitocondriales/genética , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Femenino , Fosforilación Oxidativa , Persona de Mediana Edad , Mitocondrias/metabolismo , Mitocondrias/genética , Adulto , Mitofagia/genética
4.
Brain ; 146(8): 3319-3330, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36795496

RESUMEN

Structural grey and white matter changes precede the manifestation of clinical signs of Huntington's disease by many years. Conversion to clinically manifest disease therefore likely reflects not merely atrophy but a more widespread breakdown of brain function. Here, we investigated the structure-function relationship close to and after clinical onset, in important regional brain hubs, particularly caudate nucleus and putamen, which are central to maintaining normal motor behaviour. In two independent cohorts of patients with premanifest Huntington's disease close to onset and very early manifest Huntington's disease (total n = 84; n = 88 matched controls), we used structural and resting state functional MRI. We show that measures of functional activity and local synchronicity within cortical and subcortical regions remain normal in the premanifest Huntington's disease phase despite clear evidence of brain atrophy. In manifest Huntington's disease, homeostasis of synchronicity was disrupted in subcortical hub regions such as caudate nucleus and putamen, but also in cortical hub regions, for instance the parietal lobe. Cross-modal spatial correlations of functional MRI data with receptor/neurotransmitter distribution maps showed that Huntington's disease-specific alterations co-localize with dopamine receptors D1 and D2, as well as dopamine and serotonin transporters. Caudate nucleus synchronicity significantly improved models predicting the severity of the motor phenotype or predicting the classification into premanifest Huntington's disease or motor manifest Huntington's disease. Our data suggest that the functional integrity of the dopamine receptor-rich caudate nucleus is key to maintaining network function. The loss of caudate nucleus functional integrity affects network function to a degree that causes a clinical phenotype. These insights into what happens in Huntington's disease could serve as a model for what might be a more general relationship between brain structure and function in neurodegenerative diseases in which other brain regions are vulnerable.


Asunto(s)
Enfermedad de Huntington , Humanos , Enfermedad de Huntington/metabolismo , Núcleo Caudado/diagnóstico por imagen , Núcleo Caudado/metabolismo , Dopamina , Encéfalo/patología , Atrofia/patología , Imagen por Resonancia Magnética , Fenotipo
5.
Cereb Cortex ; 33(3): 612-621, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-35253836

RESUMEN

The role hemispheric lateralization in the prefrontal cortex plays for episodic memory formation in general, and for emotionally valenced information in particular, is debated. In a randomized, double-blind, and sham-controlled design, healthy young participants (n = 254) performed 2 runs of encoding to categorize the perceptual, semantic, or emotionally valenced (positive or negative) features of words followed by a free recall and a recognition task. To resolve competing hypotheses about the contribution of each hemisphere, we modulated left or right dorsolateral prefrontal cortex (DLPFC) activity using transcranial direct current stimulation during encoding (1 mA, 20 min). With stimulation of the left DLPFC, but not the right DLPFC, encoding and free recall performance improved particularly for words that were processed semantically. In addition, enhancing left DLPFC activity increased memory formation for positive content while reducing that for negative content. In contrast, promoting right DLPFC activity increased memory formation for negative content. The left DLPFC assesses semantic properties of new memory content at encoding and thus influences how successful new episodic memories are established. Hemispheric laterlization-more active left DLPFC and less active right DLPFC-at the encoding stage shifts the formation of memory traces in favor of positively valenced content.


Asunto(s)
Memoria Episódica , Corteza Prefrontal , Humanos , Recuerdo Mental/fisiología , Corteza Prefrontal/fisiología , Reconocimiento en Psicología/fisiología , Estimulación Transcraneal de Corriente Directa , Método Doble Ciego , Voluntarios Sanos
6.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34301881

RESUMEN

Mitochondrial dysfunction is found in the brain and peripheral tissues of patients diagnosed with Huntington's disease (HD), an irreversible neurodegenerative disease of which aging is a major risk factor. Mitochondrial function is encoded by not only nuclear DNA but also DNA within mitochondria (mtDNA). Expansion of mtDNA heteroplasmies (coexistence of mutated and wild-type mtDNA) can contribute to age-related decline of mitochondrial function but has not been systematically investigated in HD. Here, by using a sensitive mtDNA-targeted sequencing method, we studied mtDNA heteroplasmies in lymphoblasts and longitudinal blood samples of HD patients. We found a significant increase in the fraction of mtDNA heteroplasmies with predicted pathogenicity in lymphoblasts from 1,549 HD patients relative to lymphoblasts from 182 healthy individuals. The increased fraction of pathogenic mtDNA heteroplasmies in HD lymphoblasts also correlated with advancing HD stages and worsened disease severity measured by HD motor function, cognitive function, and functional capacity. Of note, elongated CAG repeats in HTT promoted age-dependent expansion of pathogenic mtDNA heteroplasmies in HD lymphoblasts. We then confirmed in longitudinal blood samples of 169 HD patients that expansion of pathogenic mtDNA heteroplasmies was correlated with decline in functional capacity and exacerbation of HD motor and cognitive functions during a median follow-up of 6 y. The results of our study indicate accelerated decline of mtDNA quality in HD, and highlight monitoring mtDNA heteroplasmies longitudinally as a way to investigate the progressive decline of mitochondrial function in aging and age-related diseases.


Asunto(s)
ADN Mitocondrial/genética , Genoma Mitocondrial , Enfermedad de Huntington/patología , Linfocitos/patología , Mitocondrias/patología , Fosforilación Oxidativa , Estudios de Casos y Controles , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Estudios Longitudinales , Linfocitos/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo
7.
Am J Hum Genet ; 107(1): 96-110, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32589923

RESUMEN

A recent genome-wide association study of Huntington disease (HD) implicated genes involved in DNA maintenance processes as modifiers of onset, including multiple genome-wide significant signals in a chr15 region containing the DNA repair gene Fanconi-Associated Nuclease 1 (FAN1). Here, we have carried out detailed genetic, molecular, and cellular investigation of the modifiers at this locus. We find that missense changes within or near the DNA-binding domain (p.Arg507His and p.Arg377Trp) reduce FAN1's DNA-binding activity and its capacity to rescue mitomycin C-induced cytotoxicity, accounting for two infrequent onset-hastening modifier signals. We also idenified a third onset-hastening modifier signal whose mechanism of action remains uncertain but does not involve an amino acid change in FAN1. We present additional evidence that a frequent onset-delaying modifier signal does not alter FAN1 coding sequence but is associated with increased FAN1 mRNA expression in the cerebral cortex. Consistent with these findings and other cellular overexpression and/or suppression studies, knockout of FAN1 increased CAG repeat expansion in HD-induced pluripotent stem cells. Together, these studies support the process of somatic CAG repeat expansion as a therapeutic target in HD, and they clearly indicate that multiple genetic variations act by different means through FAN1 to influence HD onset in a manner that is largely additive, except in the rare circumstance that two onset-hastening alleles are present. Thus, an individual's particular combination of FAN1 haplotypes may influence their suitability for HD clinical trials, particularly if the therapeutic agent aims to reduce CAG repeat instability.


Asunto(s)
Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas/genética , Enfermedad de Huntington/genética , Enzimas Multifuncionales/genética , Línea Celular , Estudio de Asociación del Genoma Completo/métodos , Células HEK293 , Haplotipos/genética , Humanos , Polimorfismo de Nucleótido Simple/genética
8.
BMC Psychiatry ; 23(1): 722, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803337

RESUMEN

BACKGROUND: Prospective memory is important for our health and independence but declines with age. Hence, interventions to enhance prospective memory, for example by providing an incentive, may promote healthy ageing. The neuroanatomical correlates of prospective memory and the processing of incentive-related prospective memory changes in older adults are not fully understood. In an fMRI study, we will therefore test whether incentives improve prospective memory in older adults and how prospective memory is processed in the brain in general, and when incentives are provided. Since goals and interests change across adulthood, avoiding losses is becoming more important for older adults than achieving gains. We therefore posit that loss-related incentives will enhance prospective memory, which will be subserved by increased prefrontal and midbrain activity. METHODS: We will include n = 60 healthy older adults (60-75 years of age) in a randomized, single-blind, and parallel-group study. We will acquire 7T fMRI data in an incentive group and a control group (n = 30 each, stratified by education, age, and sex). Before and after fMRI, all participants will complete questionnaires and cognitive tests to assess possible confounders (e.g., income, personality traits, sensitivity to reward or punishment). DISCUSSION: The results of this study will clarify whether loss-related incentives can enhance prospective memory and how any enhancement is processed in the brain. In addition, we will determine how prospective memory is processed in the brain in general. The results of our study will be an important step towards a better understanding of how prospective memory changes when we get older and for developing interventions to counteract cognitive decline.


Asunto(s)
Memoria Episódica , Motivación , Humanos , Anciano , Adulto , Imagen por Resonancia Magnética , Método Simple Ciego , Encéfalo/diagnóstico por imagen , Ensayos Clínicos Controlados Aleatorios como Asunto
9.
Gastroenterology ; 161(3): 996-1010.e1, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34097885

RESUMEN

BACKGROUNDS & AIMS: Fluoropyrimidine c (5-fluorouracil [5FU]) increasingly represents the chemotherapeutic backbone for neoadjuvant, adjuvant, and palliative treatment of pancreatic ductal adenocarcinoma (PDAC). Even in combination with other agents, 5FU efficacy remains transient and limited. One explanation for the inadequate response is insufficient and nonspecific delivery of 5FU to the tumor. METHODS: We designed, generated, and characterized 5FU-incorporated systematic evolution of ligands by exponential enrichment (SELEX)-selected epidermal growth factor receptor (EGFR)-targeted aptamers for tumor-specific delivery of 5FU to PDAC cells and tested their therapeutic efficacy in vitro and in vivo. RESULTS: 5FU-EGFR aptamers reduced proliferation in a concentration-dependent manner in mouse and human pancreatic cancer cell lines. Time-lapsed live imaging showed EGFR-specific uptake of aptamers via clathrin-dependent endocytosis. The 5FU-aptamer treatment was equally effective in 5FU-sensitive and 5FU-refractory PDAC cell lines. Biweekly treatment with 5FU-EGFR aptamers reduced tumor burden in a syngeneic orthotopic transplantation model of PDAC, in an autochthonously growing genetically engineered PDAC model (LSL-KrasG12D/+;LSL-Trp53flox/+;Ptf1a-Cre [KPC]), in an orthotopic cell line-derived xenograft model using human PDAC cells in athymic mice (CDX; Crl:NU-Foxn1nu), and in patient-derived organoids. Tumor growth was significantly attenuated during 5FU-EGFR aptamer treatment in the course of follow-up. CONCLUSIONS: Tumor-specific targeted delivery of 5FU using EGFR aptamers as the carrier achieved high target specificity; overcame 5FU resistance; and proved to be effective in a syngeneic orthotopic transplantation model, in KPC mice, in a CDX model, and in patient-derived organoids and, therefore, represents a promising backbone for pancreatic cancer chemotherapy in patients. Furthermore, our approach has the potential to target virtually any cancer entity sensitive to 5FU treatment by incorporating 5FU into cancer cell-targeting aptamers as the delivery platform.


Asunto(s)
Antimetabolitos Antineoplásicos/administración & dosificación , Aptámeros de Nucleótidos/administración & dosificación , Carcinoma Ductal Pancreático/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Receptores ErbB/metabolismo , Fluorouracilo/administración & dosificación , Neoplasias Pancreáticas/tratamiento farmacológico , Animales , Antimetabolitos Antineoplásicos/metabolismo , Aptámeros de Nucleótidos/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Endocitosis , Receptores ErbB/genética , Femenino , Fluorouracilo/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Organoides , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Técnica SELEX de Producción de Aptámeros , Carga Tumoral/efectos de los fármacos , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
10.
PLoS Genet ; 14(5): e1007274, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29750799

RESUMEN

Modifiers of Mendelian disorders can provide insights into disease mechanisms and guide therapeutic strategies. A recent genome-wide association (GWA) study discovered genetic modifiers of Huntington's disease (HD) onset in Europeans. Here, we performed whole genome sequencing and GWA analysis of a Venezuelan HD cluster whose families were crucial for the original mapping of the HD gene defect. The Venezuelan HD subjects develop motor symptoms earlier than their European counterparts, implying the potential for population-specific modifiers. The main Venezuelan HD family inherits HTT haplotype hap.03, which differs subtly at the sequence level from European HD hap.03, suggesting a different ancestral origin but not explaining the earlier age at onset in these Venezuelans. GWA analysis of the Venezuelan HD cluster suggests both population-specific and population-shared genetic modifiers. Genome-wide significant signals at 7p21.2-21.1 and suggestive association signals at 4p14 and 17q21.2 are evident only in Venezuelan HD, but genome-wide significant association signals at the established European chromosome 15 modifier locus are improved when Venezuelan HD data are included in the meta-analysis. Venezuelan-specific association signals on chromosome 7 center on SOSTDC1, which encodes a bone morphogenetic protein antagonist. The corresponding SNPs are associated with reduced expression of SOSTDC1 in non-Venezuelan tissue samples, suggesting that interaction of reduced SOSTDC1 expression with a population-specific genetic or environmental factor may be responsible for modification of HD onset in Venezuela. Detection of population-specific modification in Venezuelan HD supports the value of distinct disease populations in revealing novel aspects of a disease and population-relevant therapeutic strategies.


Asunto(s)
Genes Modificadores/genética , Estudio de Asociación del Genoma Completo/métodos , Enfermedad de Huntington/genética , Secuenciación Completa del Genoma/métodos , Proteínas Adaptadoras Transductoras de Señales , Edad de Inicio , Salud de la Familia , Femenino , Interacción Gen-Ambiente , Genética de Población , Haplotipos , Humanos , Proteína Huntingtina/genética , Péptidos y Proteínas de Señalización Intracelular , Masculino , Polimorfismo de Nucleótido Simple , Proteínas/genética , Venezuela
11.
Hum Mol Genet ; 27(4): 706-715, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29315381

RESUMEN

Mutations in the mitochondrially located protein CHCHD10 cause motoneuron disease by an unknown mechanism. In this study, we investigate the mutations p.R15L and p.G66V in comparison to wild-type CHCHD10 and the non-pathogenic variant p.P34S in vitro, in patient cells as well as in the vertebrate in vivo model zebrafish. We demonstrate a reduction of CHCHD10 protein levels in p.R15L and p.G66V mutant patient cells to approximately 50%. Quantitative real-time PCR revealed that expression of CHCHD10 p.R15L, but not of CHCHD10 p.G66V, is already abrogated at the mRNA level. Altered secondary structure and rapid protein degradation are observed with regard to the CHCHD10 p.G66V mutant. In contrast, no significant differences in expression, degradation rate or secondary structure of non-pathogenic CHCHD10 p.P34S are detected when compared with wild-type protein. Knockdown of CHCHD10 expression in zebrafish to about 50% causes motoneuron pathology, abnormal myofibrillar structure and motility deficits in vivo. Thus, our data show that the CHCHD10 mutations p.R15L and p.G66V cause motoneuron disease primarily based on haploinsufficiency of CHCHD10.


Asunto(s)
Haploinsuficiencia/fisiología , Proteínas Mitocondriales/metabolismo , Enfermedad de la Neurona Motora/metabolismo , Animales , ADN Complementario/genética , ADN Complementario/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Haploinsuficiencia/genética , Humanos , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Enfermedad de la Neurona Motora/genética , Mutación/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Pez Cebra , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
12.
J Magn Reson Imaging ; 52(5): 1385-1399, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32469154

RESUMEN

BACKGROUND: Structural brain MRI measures are frequently examined in both healthy and clinical groups, so an understanding of how these measures vary over time is desirable. PURPOSE: To test the stability of structural brain MRI measures over time. POPULATION: In all, 112 healthy volunteers across four sites. STUDY TYPE: Retrospective analysis of prospectively acquired data. FIELD STRENGTH/SEQUENCE: 3 T, magnetization prepared - rapid gradient echo, and single-shell diffusion sequence. ASSESSMENT: Diffusion, cortical thickness, and volume data from the sensorimotor network were assessed for stability over time across 3 years. Two sites used a Siemens MRI scanner, two sites a Philips scanner. STATISTICAL TESTS: The stability of structural measures across timepoints was assessed using intraclass correlation coefficients (ICC) for absolute agreement, cutoff ≥0.80, indicating high reliability. Mixed-factorial analysis of variance (ANOVA) was used to examine between-site and between-scanner type differences in individuals over time. RESULTS: All cortical thickness and gray matter volume measures in the sensorimotor network, plus all diffusivity measures (fractional anisotropy plus mean, axial and radial diffusivities) for primary and premotor cortices, primary somatosensory thalamic connections, and the cortico-spinal tract met ICC. The majority of measures differed significantly between scanners, with a trend for sites using Siemens scanners to produce larger values for connectivity, cortical thickness, and volume measures than sites using Philips scanners. DATA CONCLUSION: Levels of reliability over time for all tested structural MRI measures were generally high, indicating that any differences between measurements over time likely reflect underlying biological differences rather than inherent methodological variability. LEVEL OF EVIDENCE: 4. TECHNICAL EFFICACY STAGE: 1.


Asunto(s)
Sustancia Gris , Imagen por Resonancia Magnética , Adulto , Encéfalo/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Humanos , Reproducibilidad de los Resultados , Estudios Retrospectivos
13.
Hum Mol Genet ; 26(19): 3859-3867, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28934397

RESUMEN

Huntington's disease (HD) is a dominantly inherited neurodegenerative disease caused by an expanded CAG repeat in HTT. Many clinical characteristics of HD such as age at motor onset are determined largely by the size of HTT CAG repeat. However, emerging evidence strongly supports a role for other genetic factors in modifying the disease pathogenesis driven by mutant huntingtin. A recent genome-wide association analysis to discover genetic modifiers of HD onset age provided initial evidence for modifier loci on chromosomes 8 and 15 and suggestive evidence for a locus on chromosome 3. Here, genotyping of candidate single nucleotide polymorphisms in a cohort of 3,314 additional HD subjects yields independent confirmation of the former two loci and moves the third to genome-wide significance at MLH1, a locus whose mouse orthologue modifies CAG length-dependent phenotypes in a Htt-knock-in mouse model of HD. Both quantitative and dichotomous association analyses implicate a functional variant on ∼32% of chromosomes with the beneficial modifier effect that delays HD motor onset by 0.7 years/allele. Genomic DNA capture and sequencing of a modifier haplotype localize the functional variation to a 78 kb region spanning the 3'end of MLH1 and the 5'end of the neighboring LRRFIP2, and marked by an isoleucine-valine missense variant in MLH1. Analysis of expression Quantitative Trait Loci (eQTLs) provides modest support for altered regulation of MLH1 and LRRFIP2, raising the possibility that the modifier affects regulation of both genes. Finally, polygenic modification score and heritability analyses suggest the existence of additional genetic modifiers, supporting expanded, comprehensive genetic analysis of larger HD datasets.


Asunto(s)
Proteína Huntingtina/genética , Homólogo 1 de la Proteína MutL/genética , Alelos , Animales , Cromosomas Humanos Par 15 , Cromosomas Humanos Par 8 , Modelos Animales de Enfermedad , Genes Modificadores/genética , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Ratones , Homólogo 1 de la Proteína MutL/metabolismo , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Repeticiones de Trinucleótidos
14.
Am J Hum Genet ; 98(2): 287-98, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26849111

RESUMEN

Huntington disease (HD) is caused by an expanded HTT CAG repeat that leads in a length-dependent, completely dominant manner to onset of a characteristic movement disorder. HD also displays early mortality, so we tested whether the expanded CAG repeat exerts a dominant influence on age at death and on the duration of clinical disease. We found that, as with clinical onset, HD age at death is determined by expanded CAG-repeat length and has no contribution from the normal CAG allele. Surprisingly, disease duration is independent of the mutation's length. It is also unaffected by a strong genetic modifier of HD motor onset. These findings suggest two parsimonious alternatives. (1) HD pathogenesis is driven by mutant huntingtin, but before or near motor onset, sufficient CAG-driven damage occurs to permit CAG-independent processes and then lead to eventual death. In this scenario, some pathological changes and their clinical correlates could still worsen in a CAG-driven manner after disease onset, but these CAG-related progressive changes do not themselves determine duration. Alternatively, (2) HD pathogenesis is driven by mutant huntingtin acting in a CAG-dependent manner with different time courses in multiple cell types, and the cellular targets that lead to motor onset and death are different and independent. In this scenario, processes driven by HTT CAG length lead directly to death but not via the striatal pathology associated with motor manifestations. Each scenario has important ramifications for the design and testing of potential therapeutics, especially those aimed at preventing or delaying characteristic motor manifestations.


Asunto(s)
Enfermedad de Huntington/genética , Mutación , Proteínas del Tejido Nervioso/genética , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Alelos , Niño , Preescolar , Estudios de Cohortes , Cuerpo Estriado/metabolismo , Haplotipos , Humanos , Proteína Huntingtina , Enfermedad de Huntington/mortalidad , Persona de Mediana Edad , Proteínas del Tejido Nervioso/metabolismo , Adulto Joven
15.
Mol Cell ; 44(1): 85-96, 2011 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-21981920

RESUMEN

Faithful transmission of genomic information requires tight spatiotemporal regulation of DNA replication factors. In the licensing step of DNA replication, CDT-1 is loaded onto chromatin to subsequently promote the recruitment of additional replication factors, including CDC-45 and GINS. During the elongation step, the CDC-45/GINS complex moves with the replication fork; however, it is largely unknown how its chromatin association is regulated. Here, we show that the chaperone-like ATPase CDC-48/p97 coordinates degradation of CDT-1 with release of the CDC-45/GINS complex. C. elegans embryos lacking CDC-48 or its cofactors UFD-1/NPL-4 accumulate CDT-1 on mitotic chromatin, indicating a critical role of CDC-48 in CDT-1 turnover. Strikingly, CDC-48(UFD-1/NPL-4)-deficient embryos show persistent chromatin association of CDC-45/GINS, which is a consequence of CDT-1 stabilization. Moreover, our data confirmed a similar regulation in Xenopus egg extracts, emphasizing a conserved coordination of licensing and elongation events during eukaryotic DNA replication by CDC-48/p97.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Replicación del ADN , Ligasas/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Caenorhabditis elegans , Masculino , Mitosis , Interferencia de ARN , Espermatozoides/metabolismo , Técnicas del Sistema de Dos Híbridos , Ubiquitina/química , Ubiquitina/metabolismo , Proteína que Contiene Valosina , Xenopus laevis
16.
Am J Med Genet B Neuropsychiatr Genet ; 180(3): 232-245, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30788902

RESUMEN

Studying individuals with extreme phenotypes could facilitate the understanding of disease modification by genetic or environmental factors. Our aim was to identify Huntington's disease (HD) patients with extreme symbol digit modality test (SDMT) scores. We first examined in HD the contribution of cognitive measures of the Unified Huntington's Disease Rating Scale (UHDRS) in predicting clinical endpoints. The language-independent SDMT was used to identify patients performing very well or very poorly relative to their CAG and age cohort. We used data from REGISTRY and COHORT observational study participants (5,603 HD participants with CAG repeats above 39 with 13,868 visits) and of 1,006 healthy volunteers (with 2,241 visits), included to identify natural aging and education effects on cognitive measures. Separate Cox proportional hazards models with CAG, age at study entry, education, sex, UHDRS total motor score and cognitive (SDMT, verbal fluency, Stroop tests) scores as covariates were used to predict clinical endpoints. Quantile regression for longitudinal language-independent SDMT data was used for boundary (2.5% and 97.5% quantiles) estimation and extreme score analyses stratified by age, education, and CAG repeat length. Ten percent of HD participants had an extreme SDMT phenotype for at least one visit. In contrast, only about 3% of participants were consistent SDMT extremes at two or more visits. The thresholds for the one-visit and two-visit extremes can be used to classify existing and new individuals. The identification of these phenotype extremes can be useful in the search for disease modifiers.


Asunto(s)
Cognición/fisiología , Enfermedad de Huntington/fisiopatología , Pruebas Neuropsicológicas/normas , Adulto , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Genotipo , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Fenotipo , Modelos de Riesgos Proporcionales , Reproducibilidad de los Resultados
17.
Hum Brain Mapp ; 39(9): 3516-3527, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29682858

RESUMEN

Huntington's disease (HD) is a monogenic neurodegenerative disorder caused by a CAG-repeat expansion in the Huntingtin gene. Presence of this expansion signifies certainty of disease onset, but only partly explains age at which onset occurs. Genome-wide association studies have shown that naturally occurring genetic variability influences HD pathogenesis and disease onset. Investigating the influence of biological traits in the normal population, such as variability in white matter properties, on HD pathogenesis could provide a complementary approach to understanding disease modification. We have previously shown that while white matter diffusivity patterns in the left sensorimotor network were similar in controls and HD gene-carriers, they were more extreme in the HD group. We hypothesized that the influence of natural variation in diffusivity on effects of HD pathogenesis on white matter is not limited to the sensorimotor network but extends to cognitive, limbic, and visual networks. Using tractography, we investigated 32 bilateral pathways within HD-related networks, including motor, cognitive, and limbic, and examined diffusivity metrics using principal components analysis. We identified three independent patterns of diffusivity common to controls and HD gene-carriers that predicted HD status. The first pattern involved almost all tracts, the second was limited to sensorimotor tracts, and the third encompassed cognitive network tracts. Each diffusivity pattern was associated with network specific performance. The consistency in diffusivity patterns across both groups coupled with their association with disease status and task performance indicates that naturally-occurring patterns of diffusivity can become accentuated in the presence of the HD gene mutation to influence clinical brain function.


Asunto(s)
Variación Biológica Individual , Mapeo Encefálico , Imagen de Difusión Tensora , Enfermedad de Huntington/patología , Red Nerviosa/diagnóstico por imagen , Sustancia Blanca/patología , Adulto , Femenino , Genotipo , Humanos , Proteína Huntingtina/genética , Enfermedad de Huntington/diagnóstico por imagen , Enfermedad de Huntington/genética , Masculino , Persona de Mediana Edad , Red Nerviosa/fisiología , Pruebas Neuropsicológicas , Desempeño Psicomotor , Sustancia Blanca/diagnóstico por imagen
18.
Mov Disord ; 33(3): 440-448, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29356133

RESUMEN

BACKGROUND: In Huntington's disease there is evidence of structural damage in the motor system, but it is still unclear how to link this to the behavioral disorder of movement. One feature of choreic movement is variable timing and coordination between sequences of actions. We postulate this results from desynchronization of neural activity in cortical motor areas. OBJECTIVES: The objective of this study was to explore the ability to synchronize activity in a motor network using transcranial magnetic stimulation and to relate this to timing of motor performance. METHODS: We examined synchronization in oscillatory activity of cortical motor areas in response to an external input produced by a pulse of transcranial magnetic stimulation. We combined this with EEG to compare the response of 16 presymptomatic Huntington's disease participants with 16 age-matched healthy volunteers to test whether the strength of synchronization relates to the variability of motor performance at the following 2 tasks: a grip force task and a speeded-tapping task. RESULTS: Phase synchronization in response to M1 stimulation was lower in Huntington's disease than healthy volunteers (P < .01), resulting in a reduced cortical activity at global (P < .02) and local levels (P < .01). Participants who showed better timed motor performance also showed stronger oscillatory synchronization (r = -0.356; P < .05) and higher cortical activity (r = -0.393; P < .05). CONCLUSIONS: Our data may model the ability of the motor command to respond to more subtle, physiological inputs from other brain areas. This novel insight indicates that impairments of the timing accuracy of synchronization and desynchronization could be a physiological basis for some key clinical features of Huntington's disease. © 2018 International Parkinson and Movement Disorder Society.


Asunto(s)
Mapeo Encefálico , Sincronización Cortical/fisiología , Potenciales Evocados Motores/fisiología , Enfermedad de Huntington/patología , Corteza Motora/fisiopatología , Adulto , Estudios de Casos y Controles , Electroencefalografía , Electromiografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Desempeño Psicomotor/fisiología , Tractos Piramidales/fisiopatología , Estimulación Magnética Transcraneal
19.
Neuroendocrinology ; 106(4): 335-351, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28968593

RESUMEN

INTRODUCTION: Glycogen synthase kinase 3α/ß (GSK3α/ß) is a serine/threonine kinase that plays a critical role in cancer. AIMS: In this study, we evaluated the effects of the specific GSK3α/ß inhibitor AR-A014418 in vitro to gain novel insights into GSK3α/ß signaling in neuroendocrine tumors (NETs). MATERIALS AND METHODS: Human NET cell lines (BON1, QGP1, H727, and GOT1) were treated with different concentrations of AR-A014418 alone and in combination with lovastatin, everolimus, 5-fluorouracil (5-FU), and γ-irradiation. RESULTS: AR-A014418 significantly dose- and time-dependently decreased cell viability in all 4 NET cell lines through inhibition of epithelial growth factor receptor and mTORC1/p70S6K signaling, as well as cyclin D3 downregulation and induction of pChk1. In all cell lines tested, FACS analysis showed an AR-A014418-induced increase in the sub-G1 phase, reflecting cell death. Apoptosis induction was observed in H727, GOT1 and QGP1 cells, but not in BON1 cells. Furthermore, significant antimigratory effects upon GSK3α/ß inhibition were found and were associated with ß-catenin downregulation in all cell lines tested. Compensatory upregulation of pAkt and pERK in response to GSK3α/ß inhibition was prevented by combining AR-A014418 with the ERK and Akt inhibitor lovastatin. Accordingly, the lovastatin/AR-A014418 combination was synergistic in BON1 and QGP1 cells. Moreover, AR-A014418 displayed promising chemosensitizing effects on 5-FU in QGP1 and slight radiosensitizing properties in BON1 and QGP1 cells. CONCLUSION: Our data provide new insights into the role of GSK3α/ß in NETs and suggest that GSK3α/ß inhibition could be a novel therapeutic option in NETs, especially in combination with lovastatin or 5-FU, depending on tumor entity.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta/metabolismo , Tumores Neuroendocrinos/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Tiazoles/farmacología , Urea/análogos & derivados , Urea/farmacología
20.
Am J Med Genet B Neuropsychiatr Genet ; 174(3): 283-294, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27868347

RESUMEN

The manifestation of motor signs in Huntington's disease (HD) has a well-known inverse relationship with HTT CAG repeat length, but the prediction is far from perfect. The probability of finding disease modifiers is enhanced in individuals with extreme HD phenotypes. We aimed to identify extreme HD motor phenotypes conditional on CAG and age, such as patients with very early or very late onset of motor manifestation. Retrospective data were available from 1,218 healthy controls and 9,743 HD participants with CAG repeats ≥40, and a total of about 30,000 visits. Boundaries (2.5% and 97.5% quantiles) for extreme motor phenotypes (UHDRS total motor score (TMS) and motor age-at-onset) were estimated using quantile regression for longitudinal data. More than 15% of HD participants had an extreme TMS phenotype for at least one visit. In contrast, only about 4% of participants were consistent TMS extremes at two or more visits. Data from healthy controls revealed an upper cut-off of 13 for the TMS representing the extreme of motor ratings for a normal aging population. In HD, boundaries of motor age-at-onset based on diagnostic confidence or derived from the TMS data cut-off in controls were similar. In summary, a UHDRS TMS of more than 13 in an individual carrying the HD mutation indicates a high likelihood of motor manifestations of HD irrespective of CAG repeat length or age. The identification of motor phenotype extremes can be useful in the search for disease modifiers, for example, genetic or environmental such as medication. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Adulto , Edad de Inicio , Estudios de Casos y Controles , Progresión de la Enfermedad , Femenino , Humanos , Enfermedad de Huntington/fisiopatología , Masculino , Persona de Mediana Edad , Fenotipo , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda