RESUMEN
We have previously described the only reported case of human proprotein convertase 1 (PC1) deficiency, in a female (Subject A) with obesity, hypogonadism, hypoadrenalism, and reactive hypoglycemia. We now report the second case of human PC1 deficiency (Subject B), also due to compound heterozygosity for novel missense and nonsense mutations. While both subjects shared the phenotypes of obesity, hypoadrenalism, reactive hypoglycemia, and elevated circulating levels of certain prohormones, the clinical presentation of Subject B was dominated by severe refractory neonatal diarrhea, malabsorptive in type. Subsequent investigation of Subject A revealed marked small-intestinal absorptive dysfunction, which was not previously clinically suspected. We postulate that PC1, presumably in the enteroendocrine cells, is essential for the normal absorptive function of the human small intestine. The differences in the nature and severity of presentation between the two cases cannot readily be explained on the basis of allelic heterogeneity, as the nonsense and missense mutations from both subjects had comparably severe effects on the catalytic activity of PC1. Despite Subject A's negligible PC1 activity, some mature ACTH and glucagon-like peptide 17-36(amide) were detectable in her plasma, suggesting that the production of these hormones, at least in humans, does not have an absolute dependence on PC1. The presence of severe obesity and the absence of growth retardation in both subjects contrast markedly with the phenotype of mice lacking PC1 and suggest that the precise physiological repertoire of this enzyme may vary between mammalian species.
Asunto(s)
Sistema Endocrino/fisiopatología , Absorción Intestinal , Intestino Delgado/fisiopatología , Proproteína Convertasa 1/deficiencia , Proproteína Convertasa 1/metabolismo , Animales , Calcitonina/metabolismo , Femenino , Gastrinas/metabolismo , Glucagón/metabolismo , Humanos , Insulina/metabolismo , Ratones , Persona de Mediana Edad , Linaje , Fenotipo , Proopiomelanocortina/metabolismo , Proproteína Convertasa 1/genética , Renina/metabolismoRESUMEN
Adoptive transfer of T regulatory cells (Tregs) is of great interest as a novel immunosuppressive therapy in autoimmune disorders and transplantation. Obtaining a sufficient number of stable and functional Tregs generated according to current Good Manufacturing Practice (cGMP) requirements has been a major challenge in introducing Tregs as a clinical therapy. Here, we present a protocol involving leukapheresis and CD4+ cell pre-enrichment prior to Treg sorting, which allows a sufficient number of Tregs for a clinical application to be obtained. With this method there is a decreased requirement for ex- vivo expansion. The protocol was validated in cGMP conditions. Our final Treg product passed all release criteria set for clinical applications. Moreover, during expansion Tregs presented their stable phenotype: percentage of CD4+CD25hiCD127- and CD4+FoxP3+ Tregs was > 95% and > 80%, respectively, and Tregs maintained proper immune suppressive function in vitro. Our results suggest that utilization of leukapheresis and CD4 positive selection during Treg isolation improves the likelihood of obtaining a sufficient number of high quality Treg cells during subsequent ex-vivo expansion and they can be applied clinically.
Asunto(s)
Linfocitos T CD4-Positivos/citología , Leucaféresis/métodos , Linfocitos T Reguladores/citología , Biomarcadores/metabolismo , Separación Celular , Citometría de Flujo , Factores de Transcripción Forkhead/metabolismo , Humanos , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Subunidad alfa del Receptor de Interleucina-7/metabolismoRESUMEN
Genetic variation in the gene for a cytosolic cysteine protease, calpain-10, increases the susceptibility to type 2 diabetes apparently by altering levels of gene expression. In view of the importance of altered beta-cell function in the pathophysiology of type 2 diabetes, the present study was undertaken to define the effects on insulin secretion of exposing pancreatic islets to calpain inhibitors for 48 hours. Exposure of mouse islets to calpain inhibitors (ALLN, ALLM, E-64-d, MDL 18270, and PD147631) of different structure and mechanism of action for 48 hours reversibly suppresses glucose-induced insulin secretion by 40% to 80%. Exposure of islets to inhibitors of other proteases, ie, cathepsin B and proteasome, did not affect insulin secretion. The 48-hour incubation with calpain inhibitors also attenuates insulin secretory responses to the mitochondrial fuel alpha-ketoisocaproate (KIC). The same incubation also suppresses glucose metabolism and intracellular calcium ([Ca(2+)](i)) responses to glucose or KIC in islets. In summary, long-term inhibition of islet calpain activity attenuates insulin secretion possibly by limiting the rate of glucose metabolism. A reduction of calpain activity in islet could contribute to the development of beta-cell failure in type 2 diabetes thereby providing a link between genetic susceptibility to diabetes and the pathophysiologic manifestations of the disease.
Asunto(s)
Calpaína/antagonistas & inhibidores , Inhibidores de Cisteína Proteinasa/farmacología , Islotes Pancreáticos/metabolismo , Leucina/análogos & derivados , Mitocondrias/metabolismo , Animales , Calcio/metabolismo , Separación Celular , Dipéptidos/farmacología , Metabolismo Energético/efectos de los fármacos , Glucosa/metabolismo , Técnicas In Vitro , Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/enzimología , Leucina/farmacología , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , NADP/metabolismo , Oxidación-ReducciónRESUMEN
Covalent attachment of polymers to cells and tissues could be used to solve a variety of problems associated with cellular therapies. Insulin-dependent diabetes mellitus is a disease resulting from the autoimmune destruction of the beta cells of the islets of Langerhans in the pancreas. Transplantation of islets into diabetic patients is an attractive form of treatment, provided that the islets could be protected from the host's immune system to prevent graft rejection, and smaller numbers of islets transplanted in smaller volumes could be sufficient to reverse diabetes. Therefore, a need exists to develop islet encapsulation strategies that minimize transplant volume. In this study, we demonstrate the formation of nano-thin, poly(ethylene glycol) (PEG)-rich functional conformal coatings on individual islets via layer-by-layer assembly technique. The surface of the islets is modified with biotin-PEG-N-hydroxysuccinimide (NHS), and the islets are further covered by streptavidin (SA) and biotin-PEG-peptide conjugates using the layer-by-layer method. An insulinotropic ligand, glucagon-like peptide-1 (GLP-1), is conjugated to biotin-PEG-NHS. The insulinotropic effect of GLP-1 is investigated through layer-by-layer encapsulation of islets using the biotin-PEG-GLP-1 conjugate. The effect of islet surface modification using the biotin-PEG-GLP-1 conjugate on insulin secretion in response to glucose challenge is compared via static incubation and dynamic perifusion assays. The results show that islets coated with the functional PEG conjugate are capable of secreting more insulin in response to high glucose levels compared to control islets. Finally, the presence of SA is confirmed by indirect fluorescent staining with SA-Cy3, and the presence of PEG-peptide on the surface of the islets after treatment with biotin-PEG-GLP-1 is confirmed by indirect fluorescent staining with biotin-PEG-fluorescein isothiocyanate (FITC) and separately with an anti-GLP-1 antibody. This work demonstrates the feasibility of treating pancreatic islets with reactive polymeric segments and provides the foundation for a novel means of potential immunoisolation. With this technique, it may be possible to encapsulate and/or modify islets before portal vein transplantation and reduce transplantation volume significantly, and promote islet viability and insulin secretion due to the presence of insulinotropic peptides on the islet surface. Layer-by-layer self-assembly of PEG-GLP-1 offers a unique approach to islet encapsulation to stimulate insulin secretion in response to high glucose levels.