Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Phys Condens Matter ; 36(22)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38408380

RESUMEN

Tuning the band gap is of utmost importance for the practicality of two-dimensional materials in the semiconductor industry. In this study, we investigate the ballistic transport and the tunneling magnetoresistance (TMR) properties within a modulated gap in a ferromagnetic/normal/ferromagnetic (F/N/F) phosphorene junction. The theoretical framework is established on a Dirac-like Hamiltonian, the transfer matrix method, and the Landauer-Büttiker formalism to characterize electron behavior and obtain transmittance, conductance and TMR. Our results reveal that a reduction in gap energy leads to an enhancement of conductance for both parallel and anti-parallel magnetization configurations. In contrast, a significant reduction and redshift in TMR have been observed. Notably, the application of an electrostatic field in a gapless phosphorene F/N/F junction induces a blueshift and a slight increase in TMR. Furthermore, we found that introducing an asymmetrically applied electrostatic field in this gapless junction results in a significant reduction and redshift in TMR. Additionally, intensifying the applied magnetic field leads to a substantial increase in TMR. These findings could be useful for designing and implementing practical applications that require precise control over the TMR properties of a phosphorene F/N/F junction with a modulated gap.

2.
J Phys Condens Matter ; 36(31)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38670122

RESUMEN

Monomer, dimer and trimer semiconductor superlattices are an alternative for bandgap engineering due to the possibility of duplicate, triplicate, and in general multiply the number of minibands and minigaps in a specific energy region. Here, we show that monomer, dimer, and trimer magnetic silicene superlattices (MSSLs) can be the basis for tunable magnetoresistive devices due to the multiplication of the peaks of the tunneling magnetoresistance (TMR). In addition, these structures can serve as spin-valleytronic devices due to the formation of two well-defined spin-valley polarization states by appropriately adjusting the superlattice structural parameters. We obtain these conclusions by studying the spin-valley polarization and TMR of monomer, dimer, and trimer MSSLs. The magnetic unit cell is structured with one seed A with positive magnetization, and one, two, or three seeds B with variable magnetization. The number of B seeds defines the monomer, dimer, and trimer superlattice, while its magnetic orientation positive or negative the parallel (PM) or antiparallel magnetization (AM) superlattice configuration. The transfer matrix method and the Landauer-Büttiker formalism are employed to obtain the transmission and transport properties, respectively. We find multiplication of TMR peaks in staircase fashion according to the number of B seeds in the superlattice unit cell. This multiplication is related to the multiplication of the minibands which reflects as multiplication of the descending envelopes of the conductance. We also find well-defined polarization states for both PM and AM by adjusting asymmetrically the width and height of the barrier-well in seeds A and B.

3.
J Phys Condens Matter ; 35(26)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36972607

RESUMEN

Periodic superlattices constitute ideal structures to modulate the transport properties of two-dimensional materials. In this paper, we show that the tunneling magnetoresistance (TMR) in phosphorene can be tuned effectively through periodic magnetic modulation. Deltaic magnetic barriers are arranged periodically along the phosphorene armchair direction in parallel (PM) and anti-parallel magnetization (AM) fashion. The theoretical treatment is based on a low-energy effective Hamiltonian, the transfer matrix method and the Landauer-Büttiker formalism. We find that the periodic modulation gives rise to oscillating transport characteristics for both PM and AM configurations. More importantly, by adjusting the electrostatic potential appropriately we find Fermi energy regions for which the AM conductance is reduced significantly while the PM conductance keeps considerable values, resulting in an effective TMR that increases with the magnetic field strength. These findings could be useful in the design of magnetoresistive devices based on magnetic phosphorene superlattices.

4.
J Phys Condens Matter ; 35(40)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37379854

RESUMEN

The inevitable structural disorder associated with the fluctuation of the applied external electric field, laser intensity, and bidimensional density in the low dimensional quantum system can affect noticeably optical absorption properties and the related phenomena. In this work, we study the effect of structural disorder on the optical absorption properties in delta-doped quantum wells (DDQWs). Starting from effective mass approximation and the Thomas-Fermi approach as well as using the matrix density, the electronic structure and the optical absorption coefficients of DDQWs are determined. It is found that the optical absorption properties depend on the strength and the type of structural disorder. Particularly, the bidimensional density disorder suppresses strongly the optical properties. Whilst, the disordered external applied electric field fluctuates moderately in the properties. In contrast, the disordered laser holds absorption properties unalterable. So, our results specify that to have and preserve good optical absorption properties in DDQWs, requires precise control of the bidimensional. Besides, the finding may improve the understanding of the impact of the disorder on the optoelectronic properties based on DDQWs.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda