Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Arch Insect Biochem Physiol ; 111(4): e21953, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35927971

RESUMEN

The development of the parasitoid Doryctobracon crawfordi (Viereck) (Hymenoptera: Braconidae) in Anastrepha obliqua (McQuart) (Diptera: Tephritidae) larvae is unviable in nature; however, if the host larva is irradiated at 160 Gy, the parasitoid develops and emerges successfully. This suggests that radiation affects the immune responses of A. obliqua larvae, while the underlying mechanisms remain to be revealed. Using optical and electronic microscopies we determined the number and type of hemocyte populations found inside the A. obliqua larvae, either nonirradiated, irradiated at 160 Gy, parasitized by D. crawfordi, or irradiated and parasitized. Based on flow cytometry, the capacity to produce reactive oxygen species (ROS) was determined by the 123-dihydrorhodamine method in those hemocyte cells. Five cell populations were found in the hemolymph of A. obliqua larvae, two of which (granulocytes and plasmatocytes) can phagocytize and produce ROS. A reduction in the number of cells, mainly of the phagocytic type, was observed, as well as the capacity of these cells to produce ROS, when A. obliqua larvae were irradiated. Both radiation and parasitization decreased the ROS production, and when A. obliqua larvae were irradiated followed by parasitization by D. crawfordi, the reduction of the ROS level was even greater. In contrast, a slight increase in the size of these cells was observed in the hemolymph of the parasitized larvae compared to those in nonparasitized larvae. These results suggest that radiation significantly affects the phagocytic cells of A. obliqua and thus permits the development of the parasitoid D. crawfordi.


Asunto(s)
Himenópteros , Tephritidae , Animales , Larva , Especies Reactivas de Oxígeno , Hemocitos , Himenópteros/fisiología , Fagocitosis
2.
Bull Entomol Res ; 112(5): 636-645, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35227335

RESUMEN

The figitid Ganaspis pelleranoi and the braconid Doryctobracon areolatus (Hym: Braconidae, Opiinae) are wide-ranging (from Florida, USA to Argentina) fruit fly parasitoids with tropical and subtropical distribution with a wet and temperate climate. In Argentina, both parasitoid species are thought to be restricted to the subtropical rainforests of the northwest and northeast, locally known as 'Yungas' and 'Paranaense' forests, respectively. However, these species recently have been recorded at the Monte and Thistle of the Prepuna eco-region, an arid region of central-western Argentina. Despite the extreme environmental conditions, anthropic artificial irrigation seems to be playing a fundamental role in fostering the presence and persistence of these species. Maximum Entropy (MaxEnt) models were developed to assess the suitability of these areas to harbor both species. The present work is a first approach to identify suitable areas for the distribution of these two fruit fly biological control agents in the American continent; based on 19 bioclimatic variables. Furthermore, the models resulting from including the new records in the 'Monte' eco-region suggest that local populations may become adapted to particular micro-environmental conditions generated by artificial irrigation. Models revealed that these artificial oases are suitable for G. pelleranoi but seem to be unsuitable for D. areolatus. This first and new approach to the area suitability of these species invites to produce models that reflect actual distribution including more records of presence in oases with similar conditions, thus decreasing the bias of the model generated by over reliance on areas with higher humidity (forest), which correspond to the distribution known before the inclusion of the new records.


Asunto(s)
Himenópteros , Tephritidae , Animales , Entropía , Larva , Argentina , Drosophila
3.
Bull Entomol Res ; 112(6): 807-817, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35762315

RESUMEN

Doses of 40, 80, 120, and 160 Gy were applied to 5-, 6-, 7-, and 8-day-old Anastrepha obliqua larvae, which were exposed to the Neotropical-native braconids Doryctobracon crawfordi and Utetes anastrephae and the Asian braconid Diachasmimorpha longicaudata. These tests were performed to know the effect of the increase in host radiation on the emergence of the aforementioned parasitoids and the related consequences of oviposition on the host. The study was based on the fact that higher radiation doses may cause a decrease in the host immune activity. There was a direct relationship between the increase in radiation dose and the parasitoid emergence. Both, the weight and the mortality of the host larvae were not affected by radiation. Although the larval weight of the larvae was lower and the mortality was higher in the younger larvae. Both, the number of scars and immature stages per host puparium originated from the younger larvae were lower than those from older larvae. Only U. anastrephae superparasitized more at lower radiation. Superparasitism by D. longicaudata was more frequent at 160 Gy. Qualitative measurements of melanin in the larvae parasitized showed that the levels were lower with increasing radiation. As radiation doses increased, the antagonistic response of the A. obliqua larva was reduced. Host larvae aged 5- and 6-day-old irradiated at 120-160 Gy significantly improve parasitoid emergence. This evidence is relevant for the mass production of the three tested parasitoid species.


Asunto(s)
Himenópteros , Tephritidae , Femenino , Animales , Tephritidae/efectos de la radiación , Larva/efectos de la radiación , Oviposición , Dosis de Radiación
4.
Plants (Basel) ; 13(5)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38475479

RESUMEN

The spotted-wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), is a pest that reduces the productivity of small fruits. Entomopathogenic nematodes (EPNs) and chemical insecticides can suppress this pest, but the compatibility of the two approaches together requires further examination. This laboratory study evaluated the compatibility of Steinernema brazilense IBCBn 06, S. carpocapsae IBCBn 02, Heterorhabditis amazonensis IBCBn 24, and H. bacteriophora HB with ten chemical insecticides registered for managing D. suzukii pupae. In the first study, most insecticides at the recommended rate did not reduce the viability (% of living infective juveniles (IJs)) of S. braziliense and both Heterorhabditis species. The viability of S. carpocapsae was lowered by exposure to spinetoram, malathion, abamectin, azadirachtin, deltamethrin, lambda-cyhalothrin, malathion, and spinetoram after 48 h. During infectivity bioassays, phosmet was compatible with all the EPNs, causing minimal changes in infectivity (% pupal mortality) and efficiency relative to EPN-only controls, whereas lambda-cyhalothrin generally reduced infectivity of EPNs on D. suzukii pupae the most, with a 53, 75, 57, and 13% reduction in infectivity efficiency among H. bacteriophora, H. amazonensis, S. carpocapsae, and S. brazilense, respectively. The second study compared pupal mortality caused by the two most compatible nematode species and five insecticides in various combinations. Both Heterorhabditis species caused 78-79% mortality among D. suzukii pupae when used alone, and were tested in combination with spinetoram, malathion, azadirachtin, phosmet, or novaluron at a one-quarter rate. Notably, H. bacteriophora caused 79% mortality on D. suzukii pupae when used alone, and 89% mortality when combined with spinetoram, showing an additive effect. Novaluron drastically reduced the number of progeny IJs when combined with H. amazonensis by 270 IJs and H. bacteriophora by 218. Any adult flies that emerged from EPN-insecticide-treated pupae had a shorter lifespan than from untreated pupae. The combined use of Heterorhabditis and compatible chemical insecticides was promising, except for novaluron.

5.
Neotrop Entomol ; 52(6): 986-992, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37495767

RESUMEN

The invasive pest Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) was recently recorded in Brazil and constitutes a threat to fruit growing, mainly for small, soft fruits. Recent advances in research on ways of controlling D. suzukii involve the use of entomopathogenic nematodes (EPNs). In this context, the objective of this study was to evaluate the pathogenicity and virulence of four isolates in different concentrations against D. suzukii pupae. The EPN isolates used in trials were Steinernema brazilense IBCBn 06, S. carpocapsae IBCBn 02, Heterorhabditis bacteriophora HB, and H. amazonensis IBCBn 24. Both H. amazonensis IBCBn 24 and H. bacteriophora HB were effective in controlling D. suzukii as they caused a mortality rate of 86.25% and 80.0%, and virulence of 549.75 IJs/pupae and 787.75 IJs/pupae in the concentrations of 1800 IJs/ml and 5400 IJs/ml, respectively. The lowest lethal concentrations (LC50) of juveniles were found in host pupae with 771.63 IJs/ml of H. bacteriophora HB and 1115.49 IJs/ml of H. amazonensis IBCBn 24. Results showed that both EPNs, H. amazonensis IBCBn 24 and H. bacteriophora HB, could be promising eco-friendly biological agents to control D. suzukii.


Asunto(s)
Drosophila , Rabdítidos , Animales , Larva , Virulencia , Brasil , Control Biológico de Vectores/métodos , Pupa
6.
Environ Entomol ; 51(6): 1120-1135, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36287246

RESUMEN

Ceratitis capitata (Wiedemann) and Drosophila suzukii (Matsumura) are two severe invasive pests widespread in all Argentinean fruit-producing regions. Both coexist with the Neotropical pest Anastrepha fraterculus (Wiedemann) in northern Argentina. The northwestern region shelters major soft fruit and Citrus producing and exporting industries, which are heavily affected by these dipterans. Eco-friendly strategies are under assessment in Argentina. This study mainly assessed D. suzukii, C. capitata, and A. fraterculus temporal abundance variations and their natural parasitism levels on a 1.5-ha-patch of feral peach trees within a disturbed secondary subtropical rainforest of northwestern Argentina. Fly puparia were mainly collected from the soil under fallen peach. Sampling was performed over three peach fruiting seasons. The most abundant pest species was C. capitata. Drosophila suzukii was only found in the last collecting period, but outnumbered A. fraterculus. Natural parasitism distinctly affected the temporal abundance of these dipterans: it significantly depressed C. capitata abundance in last sampling weeks, it did not substantially affect D. suzukii abundance, but it increased synchronously with the increase in the A. fraterculus abundance. Parasitism on C. capitata was mostly exerted by a combination of both a cosmopolitan pupal and a native larval parasitoid, while A. fraterculus was mainly parasitized by two indigenous larval parasitoids. Only three resident pupal parasitoids were associated with D. suzukii, of which the cosmopolitan Pachycrepoideus vindemiae Rondani (Hymenoptera: Pteromalidae) was the most significant. Data on the resident parasitoid impact are relevant for designing biocontrol strategies in noncrop habitats.


Asunto(s)
Ceratitis capitata , Himenópteros , Tephritidae , Animales , Especies Introducidas , Drosophila , Pupa , Control Biológico de Vectores
7.
Insects ; 11(10)2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32993000

RESUMEN

Biological control has been the most commonly researched control tactic within fruit fly management programs. For the first time, a review is carried out covering parasitoids and predators of fruit flies (Tephritidae) from the Americas and Hawaii, presenting the main biological control programs in this region. In this work, 31 species of fruit flies of economic importance are considered in the genera Anastrepha (11), Rhagoletis (14), Bactrocera (4), Ceratitis (1), and Zeugodacus (1). In this study, a total of 79 parasitoid species of fruit flies of economic importance are listed and, from these, 50 are native and 29 are introduced. A total of 56 species of fruit fly predators occur in the Americas and Hawaii.

8.
J Econ Entomol ; 113(3): 1134-1144, 2020 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-32307531

RESUMEN

Improvements in the mass rearing of Diachasmimorpha longicaudata (Ashmead) on larvae of the Vienna-8 temperature-sensitive lethal genetic sexing strain of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) (= GSS Vienna-8) at the San Juan biofactory, Argentina, are currently under way. Lowering cost production is a key factor regarding parasitoid rearing. Thus, the variation in mass-reared parasitoid encapsulation levels and the incidence of superparasitism were determined; also, the gamma radiation dose-effect relation on host larvae and the influence of Mediterranean fruit fly strain were considered. Naked Mediterranean fruit fly larvae of both GSS Vienna-8 and a wild bisexual strain (= WBS) aged 6-d-old were irradiated at 0, 20, 40, 60, 80, 100, and 120 Gy, and exposed to parasitoid females. Melanization level was tested for encapsulated parasitoid larval first-instars (= L1). Non-irradiated and irradiated WBS larvae at 20-40 Gy displayed a significantly higher incidence of encapsulation when compared with GSS Vienna-8 larvae. The low melanized level in encapsulated parasitoid L1 was the most common melanization process at 72 h puparium dissection. A high melanized level was only found in non-irradiated WBS larvae. Irradiated GSS Vienna-8 larvae can neutralize the host immunological reactions over irradiated WBS larvae much more quickly. Superparasitism intensity in both Mediterranean fruit fly strains was not affected by radiation doses. High levels of superparasitism seemingly helped to overcome the host's immune reaction by the surviving parasitoid larva. Parasitoid emergence increased from 60 Gy onwards in both Mediterranean fruit fly strains. Radiation in GSS Vienna-8 larvae may favor host's antagonistic reactions decrease in relation with D. longicaudata development.


Asunto(s)
Ceratitis capitata , Himenópteros , Tephritidae , Animales , Argentina , Femenino , Larva , Control Biológico de Vectores
9.
J Econ Entomol ; 113(4): 1666-1674, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32789525

RESUMEN

Coptera haywardi (Ogloblin) is a pupal endoparasitoid of tephritid flies with great potential as a biological control agent worldwide as it does not attack other Diptera. To reach its full potential, its mass rearing needs to be enhanced lowering costs. Here, we focused on the use of irradiated pupae of Ceratitis capitata (Wiedemann) stemming from the temperature-sensitive lethal (tsl) Vienna-8 genetic sexing strain (= CcVienna-8), which is mass-produced in the San Juan Medfly and Parasitoid Mass Rearing Facility in Argentina. Exposure of 1- to 2-d-old CcVienna-8 pupae irradiated at 90 Gy to 6- to 8-d-old C. haywardi females at a 10:1 host/parasitoid ratio for 24 h turned out to be highly successful for the rearing of this parasitoid. High radiation doses (90-100 Gy) did not adversely influence fitness parameters of C. haywardi offspring F1, namely lifetime reproductive rates, adult life expectancy, and survival time. Demographic parameters in C. haywardi F1 from irradiated CcVienna-8 young pupae were improved compared to those values recorded from parasitoid originated from nonirradiated CcVienna-8 pupae. These findings will help to enhance parasitoid mass rearing for augmentative releases against medfly in Argentinean fruit-producing regions.


Asunto(s)
Ceratitis capitata , Himenópteros , Tephritidae , Animales , Argentina , Ceratitis capitata/genética , Femenino , Control Biológico de Vectores , Pupa , Temperatura , Tephritidae/genética
10.
Environ Entomol ; 45(5): 1184-1198, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27436842

RESUMEN

A 4-yr study was done to analyze seasonal patterns underlying host plant-fruit fly-parasitoid interactions in a secondary forest in the Argentinean Yunga and its importance for the implementation of conservation and augmentative biological control. Larval-pupal hymenopteran parasitoids associated with all host plants and fruit fly species were identified and the seasonal occurrence of fruit, infestation levels, parasitism percentage, and relative parasitoid abundance were determined. Three fruit fly species in two genera were found in association with surveyed plants, two of which (Ceratitis capitata (Wiedemann) and Anastrepha fraterculus (Wiedemann)) are of major economic importance. Infestation levels were strongly influenced by environmental factors and peak fruit availability. Five fruit fly parasitoid species were recovered from fly pupae, four braconid species, and one figitid. Time windows for fruit fly population growth were pinpointed. Based on results, the present analysis proposes an effective fruit fly biological control strategy tailored for the northwestern Argentinean citrus-producing area.


Asunto(s)
Himenópteros/fisiología , Control Biológico de Vectores , Tephritidae/parasitología , Animales , Argentina , Ceratitis capitata/crecimiento & desarrollo , Ceratitis capitata/parasitología , Himenópteros/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/parasitología , Larva/fisiología , Pupa/crecimiento & desarrollo , Pupa/parasitología , Pupa/fisiología , Estaciones del Año , Especificidad de la Especie , Tephritidae/crecimiento & desarrollo
11.
PLoS One ; 11(3): e0152222, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27007298

RESUMEN

Parasitoids searching for polyphagous herbivores can find their hosts in a variety of habitats. Under this scenario, chemical cues from the host habitat (not related to the host) represent poor indicators of host location. Hence, it is unlikely that naïve females show a strong response to host habitat cues, which would become important only if the parasitoids learn to associate such cues to the host presence. This concept does not consider that habitats can vary in profitability or host nutritional quality, which according to the optimal foraging theory and the preference-performance hypothesis (respectively) could shape the way in which parasitoids make use of chemical cues from the host habitat. We assessed innate preference in the fruit fly parasitoid Diachasmimorpha longicaudata among chemical cues from four host habitats (apple, fig, orange and peach) using a Y-tube olfactometer. Contrary to what was predicted, we found a hierarchic pattern of preference. The parasitism rate realized on these fruit species and the weight of the host correlates positively, to some extent, with the preference pattern, whereas preference did not correlate with survival and fecundity of the progeny. As expected for a parasitoid foraging for generalist hosts, habitat preference changed markedly depending on their previous experience and the abundance of hosts. These findings suggest that the pattern of preference for host habitats is attributable to differences in encounter rate and host quality. Host habitat preference seems to be, however, quite plastic and easily modified according to the information obtained during foraging.


Asunto(s)
Avispas/fisiología , Animales , Citrus sinensis , Ecosistema , Conducta Alimentaria/fisiología , Femenino , Ficus , Frutas , Malus , Prunus persica , Tephritidae/fisiología
12.
Insects ; 3(3): 870-88, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26466633

RESUMEN

In Argentina there are two tephritid fruit fly species of major economic and quarantine importance: the exotic Ceratitis capitata that originated from Southeast Africa and the native Anastrepha fraterculus. In recent years, the use of fruit fly parasitoids as biocontrol agents has received renewed attention. This increasing interest has recently led to the establishment of a program for the mass rearing of five million Diachasmimorpha longicaudata parasitoids per week in the BioPlanta San Juan facility, San Juan, Argentina. The first augmentative releases of D. longicaudata in Argentina are currently occurring on commercial fig crops in rural areas of San Juan as part of an integrated fruit fly management program on an area-wide basis. In this context, research is ongoing to assess the suitability of indigenous parasitoid species for successful mass rearing on larvae of either C. capitata or A. fraterculus. The purpose of this article is to provide a historical overview of the biological control of the fruit fly in Argentina, report on the strategies currently used in Argentina, present information on native parasitoids as potential biocontrol agents, and discuss the establishment of a long-term fruit fly biological control program, including augmentative and conservation modalities, in Argentina's various fruit growing regions.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda