Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nat Immunol ; 25(9): 1607-1622, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39138384

RESUMEN

The evolution of T cell molecular signatures in the distal lung of patients with severe pneumonia is understudied. Here, we analyzed T cell subsets in longitudinal bronchoalveolar lavage fluid samples from 273 patients with severe pneumonia, including unvaccinated patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or with respiratory failure not linked to pneumonia. In patients with SARS-CoV-2 pneumonia, activation of interferon signaling pathways, low activation of the NF-κB pathway and preferential targeting of spike and nucleocapsid proteins early after intubation were associated with favorable outcomes, whereas loss of interferon signaling, activation of NF-κB-driven programs and specificity for the ORF1ab complex late in disease were associated with mortality. These results suggest that in patients with severe SARS-CoV-2 pneumonia, alveolar T cell interferon responses targeting structural SARS-CoV-2 proteins characterize individuals who recover, whereas responses against nonstructural proteins and activation of NF-κB are associated with poor outcomes.


Asunto(s)
COVID-19 , FN-kappa B , SARS-CoV-2 , Humanos , COVID-19/inmunología , SARS-CoV-2/inmunología , Masculino , Femenino , Persona de Mediana Edad , FN-kappa B/metabolismo , Anciano , Líquido del Lavado Bronquioalveolar/inmunología , Adulto , Transducción de Señal/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Interferones/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Linfocitos T/inmunología , Alveolos Pulmonares/inmunología , Alveolos Pulmonares/patología
2.
J Leukoc Biol ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38814679

RESUMEN

Neutrophils and eosinophils share common hematopoietic precursors and usually diverge into distinct lineages with unique markers before being released from their hematopoietic site, which is the bone marrow (BM). However, previous studies identified an immature Ly6g(+) Il-5Rα(+) neutrophil population in mouse BM, expressing both neutrophil and eosinophil markers suggesting hematopoietic flexibility. Moreover, others have reported neutrophil populations expressing eosinophil-specific cell surface markers in tissues and altered disease states, confusing the field regarding eosinophil origins, function, and classification. Despite these reports, it is still unclear whether hematopoietic flexibility exists in human granulocytes. To answer this, we utilized single-cell RNA sequencing (scRNA-seq) and CITE-seq to profile human BM and circulating neutrophils and eosinophils at different stages of differentiation and determine whether neutrophil plasticity plays role in asthmatic inflammation. We show that immature metamyelocyte neutrophils in humans expand during severe asthmatic inflammation and express both neutrophil and eosinophil markers. We also show an increase in tri-lobed eosinophils with mixed neutrophil and eosinophil markers in allergic asthma and that IL-5 promotes differentiation of immature blood neutrophils into tri-lobed eosinophilic phenotypes suggesting a mechanism of emergency granulopoiesis to promote myeloid inflammatory or remodeling response in patients with chronic asthma. By providing insights into unexpectedly flexible granulocyte biology and demonstrating emergency hematopoiesis in asthma, our results highlight the importance of granulocyte plasticity in eosinophil development and allergic diseases.

3.
JCI Insight ; 9(8)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38502186

RESUMEN

BACKGROUNDSurvivors of pneumonia, including SARS-CoV-2 pneumonia, are at increased risk for cognitive dysfunction and dementia. In rodent models, cognitive dysfunction following pneumonia has been linked to the systemic release of lung-derived pro-inflammatory cytokines. Microglia are poised to respond to inflammatory signals from the circulation, and their dysfunction has been linked to cognitive impairment in murine models of dementia and in humans.METHODSWe measured levels of 55 cytokines and chemokines in bronchoalveolar lavage fluid and plasma from 341 patients with respiratory failure and 13 healthy controls, including 93 unvaccinated patients with COVID-19 and 203 patients with other causes of pneumonia. We used flow cytometry to sort neuroimmune cells from postmortem brain tissue from 5 patients who died from COVID-19 and 3 patients who died from other causes for single-cell RNA-sequencing.RESULTSMicroglia from patients with COVID-19 exhibited a transcriptomic signature suggestive of their activation by circulating pro-inflammatory cytokines. Peak levels of pro-inflammatory cytokines were similar in patients with pneumonia irrespective of etiology, but cumulative cytokine exposure was higher in patients with COVID-19. Treatment with corticosteroids reduced expression of COVID-19-specific cytokines.CONCLUSIONProlonged lung inflammation results in sustained elevations in circulating cytokines in patients with SARS-CoV-2 pneumonia compared with those with pneumonia secondary to other pathogens. Microglia from patients with COVID-19 exhibit transcriptional responses to inflammatory cytokines. These findings support data from rodent models causally linking systemic inflammation with cognitive dysfunction in pneumonia and support further investigation into the role of microglia in pneumonia-related cognitive dysfunction.FUNDINGSCRIPT U19AI135964, UL1TR001422, P01AG049665, P01HL154998, R01HL149883, R01LM013337, R01HL153122, R01HL147290, R01HL147575, R01HL158139, R01ES034350, R01ES027574, I01CX001777, U01TR003528, R21AG075423, T32AG020506, F31AG071225, T32HL076139.


Asunto(s)
Citocinas , Pulmón , Microglía , Neumonía , Citocinas/metabolismo , Pulmón/metabolismo , COVID-19 , Encéfalo , Autopsia , Humanos , Ratones , Disfunción Cognitiva , Técnica del Anticuerpo Fluorescente , Neumonía/metabolismo , Interleucina-1beta/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
4.
bioRxiv ; 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37546860

RESUMEN

Neurological impairment is the most common finding in patients with post-acute sequelae of COVID-19. Furthermore, survivors of pneumonia from any cause have an elevated risk of dementia1-4. Dysfunction in microglia, the primary immune cell in the brain, has been linked to cognitive impairment in murine models of dementia and in humans5. Here, we report a transcriptional response in human microglia collected from patients who died following COVID-19 suggestive of their activation by TNF-α and other circulating pro-inflammatory cytokines. Consistent with these findings, the levels of 55 alveolar and plasma cytokines were elevated in a cohort of 341 patients with respiratory failure, including 93 unvaccinated patients with COVID-19 and 203 patients with other causes of pneumonia. While peak levels of pro-inflammatory cytokines were similar in patients with pneumonia irrespective of etiology, cumulative cytokine exposure was higher in patients with COVID-19. Corticosteroid treatment, which has been shown to be beneficial in patients with COVID-196, was associated with lower levels of CXCL10, CCL8, and CCL2-molecules that sustain inflammatory circuits between alveolar macrophages harboring SARS-CoV-2 and activated T cells7. These findings suggest that corticosteroids may break this cycle and decrease systemic exposure to lung-derived cytokines and inflammatory activation of microglia in patients with COVID-19.

5.
bioRxiv ; 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38168346

RESUMEN

Pathogen clearance and resolution of inflammation in patients with pneumonia require an effective local T cell response. Nevertheless, local T cell activation may drive lung injury, particularly during prolonged episodes of respiratory failure characteristic of severe SARS-CoV-2 pneumonia. While T cell responses in the peripheral blood are well described, the evolution of T cell phenotypes and molecular signatures in the distal lung of patients with severe pneumonia caused by SARS-CoV-2 or other pathogens is understudied. Accordingly, we serially obtained 432 bronchoalveolar lavage fluid samples from 273 patients with severe pneumonia and respiratory failure, including 74 unvaccinated patients with COVID-19, and performed flow cytometry, transcriptional, and T cell receptor profiling on sorted CD8+ and CD4+ T cell subsets. In patients with COVID-19 but not pneumonia secondary to other pathogens, we found that early and persistent enrichment in CD8+ and CD4+ T cell subsets correlated with survival to hospital discharge. Activation of interferon signaling pathways early after intubation for COVID-19 was associated with favorable outcomes, while activation of NF-κB-driven programs late in disease was associated with poor outcomes. Patients with SARS-CoV-2 pneumonia whose alveolar T cells preferentially targeted the Spike and Nucleocapsid proteins tended to experience more favorable outcomes than patients whose T cells predominantly targeted the ORF1ab polyprotein complex. These results suggest that in patients with severe SARS-CoV-2 pneumonia, alveolar T cell interferon responses targeting structural SARS-CoV-2 proteins characterize patients who recover, yet these responses progress to NF-κB activation against non-structural proteins in patients who go on to experience poor clinical outcomes.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda