RESUMEN
The adsorption of the three chlorophenol isomers, ortho, meta and para, by silicalite-1 has been studied at 30 °C, below the solubility (at the same temperature) in water. Large differences, up to 30 times, have been observed between the adsorption of the para- vs. the ortho-isomer. The difference of behavior observed between the isomers is assigned to the tendency to self-organization of the para-isomer. It seems probable that the adsorption sites are at the intersection channels. From a technical point of view, silicalite-1 seems a competitive adsorbent for p-chlorophenol.
Asunto(s)
Clorofenoles/química , Silicatos/química , AdsorciónRESUMEN
Structural transformation and sintering processes of tricalcium phosphate (TCP) ceramics prepared from defective hydroxyapatite (Ca9HPO4(PO4)5OH) were studied by X-ray diffraction (XRD) and atomic force microscopy (AFM). Starting powders with Ca/P ratio approximately 1.5 were obtained by adding 0.5 l of 0.3 M H3PO4 solution to an equal volume of 0.45 M Ca(OH)2. In the prepared ceramics, the onset temperature for transformation of defective hydroxyapatite into TCP (witlokite) agrees with the onset temperature for sintering (800 degrees C). Sintering occurs through the formation of a fibrous structure, which resembles biological hard tissue. In the 1000-1200 degrees C range, these fibres coalesce into grains of up to 0.6 microm in size with a fibrous-laminar morphology. At the end of this sintering stage witlokite transforms into alphaTCP. At about 1450 degrees C, partial decomposition of alphaTCP into Ca2P2O7+Ca4P2O9 is observed. AFM observations suggest that Ca2P2O7 is segregated in the liquid state and increases the velocity of grain growth (up to 12 microm).